
Bringing Your Own Device into

Multi-Device Ecologies

Technical Concept, Implementation and Challenges

Diploma Thesis

For attainment of the academic degree of

Dipl.-Ing. für technisch-wissenschaftliche Berufe

in the Masters Course Digital Media Technologies at St. Pölten

University of Applied Sciences, specialized area Mobile Internet

Submitted by:

Niklas Thür, BSc
dm1710262558

Advisor and First Assessor: FH-Prof. Dipl.-Ing. Dr. Markus Seidl, Bakk.

Second Assessor: Dipl.-Ing. Kerstin Blumenstein, BSc

Biedermannsdorf, 11.09.2019

Declaration

- The attached research paper is my own, original work undertaken in partial fulfillment of

my degree.

- I have made no use of sources, materials or assistance other than those which have

been openly and fully acknowledged in the text. If any part of another person’s work has

been quoted, this either appears in inverted commas or (if beyond a few lines) is indented.

- Any direct quotation or source of ideas has been identified in the text by author, date,

and page number(s) immediately after such an item, and full details are provided in a

reference list at the end of the text.

- I understand that any breach of the fair practice regulations may result in a mark of zero

for this research paper and that it could also involve other repercussions.

Date: Signature:

I

11.Sept 2019

Abstract

The field of smartphone integration in multi-device ecologies (MDE) has recently attracted

much research interest. In multi-device ecologies various types of devices can communi-

cate with each other and are aware of their mutual presence. In this context, many concepts

focus on the integration of the user’s own device. This approach is called ”bring your own

device” (BYOD). Nowadays, multiple museums offer their visitors interactive exhibitions.

These might include a guide app or interactive surfaces like a multi-touch table. However,

very few applications which combine the concepts MDE and BYOD exist in museums or

similar cultural events. When visiting a museum nearly every visitor brings their own mobile

device such as a smartphone or tablet. Therefore, using the visitor’s own device in an inter-

active exhibition is very practical. Unfortunately, there is currently no suitable infrastructure

to seamlessly link different types of devices in interactive exhibitions. This work proposes a

technical concept and key elements for developing a mutli-device ecology with the focus on

bring your own device. The technical concept and the key elements were developed in the

MEETeUX project. In addition, an own multi-device ecology was developed for the annual

exhibition of the monastery of Klosterneuburg. The proof of concept includes various key

elements which are a subset of the key elements of the MEETeUX project and represent

an essential part of an MDE for a museum. The proof of concept was tested in a five-month

evaluation phase in the monastery. The evaluation focuses on the technical functioning of

the MDE and showed that the system still had some vulnerabilities. Nevertheless, after

fixing these, the MDE proofed that it is a suitable infrastructure to seamlessly link different

interactive devices in museums. Still there are opportunities for improvement.

II

Kurzfassung

Das Gebiet der Smartphone-Integration in ”Multi-Device-Ecologies” (MDE) hat in letzter

Zeit großes Forschungsinteresse auf sich gezogen. In Mehrgeräteökologien können ver-

schiedene Arten von Geräten miteinander kommunizieren und sind sich ihrer gegenseit-

igen Präsenz bewusst. In diesem Bereich konzentrieren sich viele Konzepte auf die In-

tegration eines eigenen Geräts der Benutzer. Dieser Ansatz wird als "Bring Your Own

Device" (BYOD) bezeichnet. Heutzutage bieten viele Museen ihren Besuchern eine in-

teraktive Ausstellung. Dies kann eine Guide-App oder ein interaktives Ausstellungsstück

wie ein Multitouch-Tisch sein. Es gibt jedoch nur sehr wenige Anwendungen, die die

Konzepte MDE und BYOD kombinieren in Museen oder ähnlichen kulturellen Umgebun-

gen. Beim Museumsbesuch bringt fast jeder Besucher sein eigenes Mobilgerät, etwa ein

Smartphone oder Tablet, mit. Daher wäre es sehr praktisch, das Gerät des Besuchers in

einer interaktiven Ausstellung zu verwenden. Leider gibt es derzeit keine geeignete Infras-

truktur, um verschiedene Gerätetypen in interaktiven Ausstellungen nahtlos miteinander

zu verknüpfen. Diese Arbeit schlägt ein technisches Konzept und Schlüsselelemente für

ein MDE mit Fokus auf BYOD vor, die auf dem MEETeUX-Projekt basieren. Zusätzlich

wurde für die Jahresausstellung des Stift Klosterneuburgs eine eigene Mehrgeräteökolo-

gie mit dem Schwerpunkt BYOD entwickelt. Der Proof of Concept umfasst verschiedene

Schlüsselelemente welche ein Subset der Schlüsselelemente des MEETeUX Projektes

sind und die ein wesentlicher Bestandteil einer MDE für ein Museum darstellen. Der Wirk-

samkeitsnachweis wurde in einer fünfmonatigen Evaluierungsphase im Kloster durchge-

führt. Die Evaluierung konzentriert sich auf die technische Funktionsweise des MDE und

hat gezeigt, dass das System noch einige Schwachstellen aufweist. Trotzdem hat das

MDE nach Behebung der Schwachstellen bewiesen, dass es eine geeignete Infrastruktur

ist, um verschiedene interaktive Geräte in Museen nahtlos zu verbinden. Dennoch sind

Verbesserungsmöglichkeiten vorhanden.

III

Contents

1 Introduction 1

1.1 MEETeUX Project . 2

1.2 Method . 3

2 Related Work 4

2.1 Terminology & Technology . 4

2.2 Possible Applications . 8

3 Technical Concepts & Possibilities 14

3.1 Basic Concept . 14

3.2 Key Elements . 16

3.3 Device Communication . 18

3.4 Location Awareness . 19

3.4.1 Active Location Triggering . 19

3.4.2 Passive Location Triggering . 21

3.5 OD/App . 23

4 Proof of Concept 25

4.1 Key Elements . 25

4.2 Concept of the Multi-Device Ecology . 26

4.3 OD/App . 29

4.3.1 The Emperor’s New Saint . 29

4.3.2 The Native Part . 33

4.3.3 The Web Part . 34

4.4 The Server - GoD . 40

4.4.1 GoD . 40

4.4.2 Environment Variables . 42

4.4.3 Server Structure . 44

4.4.4 Socket Layer . 46

4.4.5 Business Controller . 50

4.4.6 Database / Sequelize Layer . 52

4.4.7 Messages . 55

4.4.8 Logging . 56

IV

4.4.9 Unit Testing . 57

4.4.10 Server Management . 59

4.4.11 Continuous Deployment . 62

4.5 Database . 63

4.6 Active Exhibits . 65

4.6.1 notifyActiveExhibit . 65

4.6.2 activeExhibit . 67

5 Evaluation 69

5.1 Hardware . 69

5.2 Server Utilization . 71

5.3 Bugs . 72

5.4 Statistics . 75

5.5 Summary . 76

6 Conclusion 77

6.1 Challenges . 80

6.2 Future Work . 80

1 Introduction

The field of smartphone integration in multi-device ecologies has recently attracted much

research interest. Bellucci et al. (2014) presented a survey, which provided a detailed

overview of the state of the art in the form of a classification of the interaction possibil-

ities between humans and the surrounding computational environment. Many concepts

focus on the integration of the user’s own device, for example (Shirazi et al. 2009) have

linked a poker game on a touch table with the players’ smartphones. Other researchers

propose methods to control touch tables and / or big wall displays with the own device

(e.g. Echtler et al. (2009), Kray et al. (2010), Seyed, Burns, et al. (2012), Winkler et al.

(2014)). Many multi-device applications are used in a variety of areas. However, there are

very few applications that can be used for museums or similar cultural events. Examples of

the few works dealing with this area are the works of Koukopoulos and Koukoulis (2018),

Othman et al. (2018) or Petrelli et al. (2017). A very promising work, is the survey of Kos-

mopoulos and Styliaras (2018). In their work they surveyed the latest advancements in

the fields of indoor location, recommendation systems, guidance systems, content storage

and presentation for museums.

The subject of this thesis are technical concepts for multi-device ecologies in museums

where the user can bring their own device (BYOD) (see chapter 2). Many museums offer

interactive exhibits such as touch displays for which various applications can be developed,

e.g., a quiz. For example, the Museum of Lower Austria offers its visitors a quiz on two

multi-touch tables. There is a version for children, and one for adults with a total number

of ten questions. In the end, the user sees how many of the questions were answered

correctly.

Unfortunately, most of these exhibits are not communicating with each other and therefore

only provide a limited experience for the visitors. Even if the exhibits are linked together, the

visitors’ own devices are rarely used as a part of a device ecology. For example, the Jewish

Museum in Vienna offers its visitors multiple exhibits like touch displays or interactive video

walls, but the interaction is only possible with the museum’s preconfigured tablets which

can be borrowed at the reception.

In addition, many museums only use these active exhibits to enhance the experience of

the visitors. An active exhibit could be a multi-touch display or touch displays in general.

They are exhibits with which the user can directly interact. However, hardly any museum

1

1 Introduction

uses the possibility of using exhibits as a passive exhibit. A passive exhibit could be e.g.,

a painting for which the user can get additional information in the form of an augmented

reality overlay. The Celtic Museum Hallein offers an app which can be installed on the

user’s own device and then uses visual markers to display a 3D character in the app. The

character tells stories of his life, but there is no other interaction possibility. The examples

show that there are currently no suitable infrastructures to seamlessly link different devices

in museums, especially with the focus on BYOD.

Therefore this thesis deals first with the questions, "Which interactive exhibits currently

exist in museums?" and "Which technical concepts are used?". To answer these questions,

several museums which include interactive exhibits were visited as a part of the MEETeUX

project. Furthermore, for some museums, it was possible to research the functionality of

the exhibition through their website.

In the next step, this thesis discusses a technical concept for a multi-device ecology with

a focus on BYOD which will be presented in chapter 3. The concept includes multiple

technologies which could be used to e.g., authenticate the user on active exhibits. The

authentication could be implemented with Bluetooth beacons, RFID readers, or optical

markers. These possibilities will be presented and discussed. Furthermore, chapter 3 will

propose the different parts of the MDE and how these parts could be developed.

The central part of this work will focus on the implementation of an own MDE with the

focus on BYOD. The MDE was developed in a follow-up project of the MEETeUX project

and will be used in the annual exhibition of 2019 in Klosterneuburg. The proof of concept

includes an app which can be installed on the visitors’ own devices. It includes a server

which manages the whole exhibition and furthermore it includes various active, interactive,

and passive exhibits. For these parts various key elements were defined, each with its cor-

responding research question. Each key element will be described in detail, and moreover,

the interaction between the various components will be presented in chapter 4.

Finally, the MDE was evaluated in an evaluation period starting in March and ending in

July 2019 (see chapter 5). The thesis will present the used setup for the evaluation as

well as the monitoring approach. In addition, the found bugs will be discussed, and some

statistics of the exhibition will be presented. The last chapter presents the challenges of the

developed infrastructure and open challenges which should be addressed in future work

(see chapter 6).

1.1 MEETeUX Project

The MEETeUX project discusses future-relevant issues in the fields of interaction design

and user experience design for the integrated use of media technology devices (mobile

2

1 Introduction

devices, multi-touch tabletops, large areas) in multi-device ecologies (MEETeUX 2019).

In semi-public spaces, there is a lack of tested interaction designs and user experience

concepts that make it challenging to apply the technologies to the potential user and the

beneficial use of those devices. MEETeUX will facilitate this by designing usage scenar-

ios for the integration of various endpoints demonstrating the use of multi-device ecolo-

gies in semi-public spaces. Therefore, MEETeUX focuses on the integration of the user’s

devices ("bring your own device" (BYOD), usual smartphones) into existing device ecolo-

gies. The use of their own equipment allows adaptation to the specific needs of the user

and thus improves accessibility. In MEETeUX, selected scenarios, e.g., for the usage of

knowledge transfer in a museum, a user-centered design approach is implemented and

evaluated (MEETeUX 2019).

1.2 Method

In order to develop an MDE with the focus on BYOD, a multi-day workshop was held at

the beginning. In this workshop, we first developed a basic concept and defined what

functionality the MDE should be able to offer. After that, we researched multiple possibilities

for inter-device communication and methods for location awareness. The technologies

that were finally selected are described in sections 3.3 and 3.4. Afterwards, we tested

which possibilities are best suited for the development of our app. Furthermore, we started

developing prototypes for all parts of the MDE to test if the concept - which is described

in chapter 3 - works. During the prototype development, several workshops were held to

improve the concept and to find a partner who would allow us to implement the MDE in a

real exhibition. We found this partner in the museum management of the Klosterneuburg

Abbey. We were asked to implement the MDE in the annual exhibition ”The Emperor’s New

Saints”. Until March 2019, the MDE was further developed for the exhibition. The exhibition

was opened at the beginning of March with which also the evaluation period started. During

the evaluation period, the technical functionality of the MDE was tested. Furthermore, all

occurring bugs were recorded and then solved. Finally, the evaluation phase ended on

July 31st. At this point, some final statistics of the exhibition were collected, which will be

presented in this thesis.

3

2 Related Work

The last chapter offered a brief introduction of the different topics and research questions

of this work. Also the MEETeUX project was introduced on which the technical concept

(see chapter 3) is based. This chapter now deals with related work. The chapter is divided

into two sections. The first section explains various terms such as multi-device ecologies

(MDE) or bringing your own device (BYOD). Furthermore, the section presents various

related publications in these fields and as one will see there are only a limited number of

papers which deal with MDE and BYOD for museums. In addition, some technical concepts

are presented that deal with one of the most important part of an MDE in museums, the

location awareness. The second chapter presents various possible applications which are

already implemented in museums. Again the section will show that there are hardly any

interactive museum exhibitions which include MDE and BYOD.

2.1 Terminology & Technology

The term "ecology" refers to the relationship between an organism and its environment,

which may include other organisms (Loke 2003). A device ecology refers to a collection of

devices which have a relation among each other, meaning that these devices can commu-

nicate with each other and are aware of their mutual presence. Therefore, in a multi-device

ecology (MDE), various types of devices have to interact with each other. Due to the rising

interest in the field of smartphone integration in multi-device ecologies, recent research pa-

pers cover this topic. Bellucci et al. (2014) presented a survey, which provided a detailed

overview of the state of the art in the form of a classification of the interaction possibili-

ties between humans and the surrounding computational environment. One challenge that

arises today, however, is that a user often has more than one device with them, such as a

laptop, smartphone or wearable. Therefore, it can often be an advantage if a User Inter-

face (UI) is split across multiple devices. In addition, there are always situations where it is

desirable to work together in collaborative settings using multiple devices. One approach

to solve problems which can occur in these setups, is the work of Park et al. (2018). They

propose an approach that automatically adapts multi-user interfaces for collaborative envi-

ronments in real-time, namely AdaM. AdaM uses a given graphical user interface and then

automatically decides which UI elements should be displayed on each device in real-time.

4

2 Related Work

The system also offers an optimization approach for multi-user scenarios and considers

user roles and preferences, device access restrictions and device characteristics.

Furthermore, Sánchez-Adame et al. (2019) propose a set of design guidelines that serve

as a means for the construction of multi-device applications. In their work they explain why

Graphical User Interface (GUI) consistency is a very important part of multi-device experi-

ences. ”Consistency not only provides users with a robust framework in similar contexts but

is an essential learning element and a lever to ensure the GUI efficient usage” (Sánchez-

Adame et al. 2019). Also Paternò (2019) deals with concepts and design spaces for multi-

device user interfaces. In his paper he discusses the motivations and characteristics of

multi-device user interfaces based on the main design issues addressed and the various

proposed solutions. In addition, the work includes a comparative discussion of relevant

systems and frameworks and their main features. Also Grubert et al. (2016) deal with

challenges in mobile multi-device environments. In their work they focus on mobile and

wearable devices such as smartphones, tablets, wearables and head-mounted displays.

For this purpose, they conducted a literature research and an expert survey to identify

technical, design, social, perceptual and physiological challenges of mobile multi-device

ecosystems. Additionally, the work of Cecchinato et al. (2017) focuses on smartwatches

and their role in MDEs. To that end, they conducted a qualitative study on users’ every-

day use of smartwatches. In their work they aim to understand the added value of smart-

watches as well as the challenges when a user is constantly connected at the wrist. In their

findings they propose various design recommendations to improve the user experience of

smartwatches. One of the challenges facing mobile devices is testing mobile applications.

Due to the large number of mobile devices and the variations in their characteristics, it is

not guaranteed that an application will work as intended on all devices (Vilkomir 2018).

Vilkomir (2018) chose to address this issue in his latest research. The goal of his research

is to find out how many devices are needed and which methods for mobile device selection

are best to find specific device deficiencies.

Multi-device applications are being tested in a wide variety of fields. However, there are

few multi-device applications for museums or similar cultural offers. An existing system is

"I-m-Cave" (Huang et al. 2014), an interactive tabletop system that makes it possible to ex-

plore the Mogao Caves in Dunhuang, China virtually. Another example is the multi-device,

location-aware museum guide ”UbiCicero” (Ghiani et al. 2009). The guide exploits large

screens when users are nearby and includes various types of games in addition to the mu-

seum and artwork descriptions. The framework Environs (Dang and André 2014) focuses

on high-quality screencasts between the devices. Vepsäläinen et al. (2015) conducted

a usability study in which they studied how users experienced four different methods of

initiating web-based interaction between a smartphone and a large display surface. Fur-

thermore, Dini et al. (2007) ”use a combination of PDAs and public displays to enhance the

learning experience in a museum setting by using game-playing interactions”. Although

5

2 Related Work

many museums have multi-touch tables, they rarely use them as part of a device ecology.

They are used more for the presentation of existing information than to collaboratively work

out new information.

Several approaches use the user’s own device as an additional display in an existing multi-

user tabletop setting. Mostly the device used is a smartphone. The concept that the user

uses his/her device is called ”bring your own device” (BYOD). For example, Shirazi et al.

(2009) have linked a poker game on a touch table with the players’ smartphones. Some

articles deal with the control of touch tables and / or big wall displays with the users’ own

device (OD) (e.g. Echtler et al. (2009), Kray et al. (2010), Seyed, Burns, et al. (2012)). Ter-

renghi et al. (2009) have contributed important foundations in the form of an investigation of

multi-person display ecosystems and a derived taxonomy. A forward-looking contribution

uses a mini-projector docked to the smartphone to create custom multi-user multi-touch

surfaces (Winkler et al. 2014). One of the few examples in which the connection of a large

multi-touch wall with smartphones in the semi-public space (at a university) is permanently

installed, is the system CubIT (Rittenbruch 2013). Boring and Baur (2013) do not use a

multi-touch table, but instead present an overarching interaction concept that employs mo-

bile devices to interact with large public displays. Almost all approaches have in common

that they were built and evaluated only in the laboratory and very few applications can be

used for museums or similar cultural events.

An example for related work which also focuses on BYOD in museums is the work of Kouk-

oulis and Koukopoulos (2016). They propose a methodology for the design and evaluation

of mobile systems for museums with the focus on enhancing the visit experience for end

users. In a later work, Koukopoulos and Koukoulis (2018) have developed a prototype that

does not only enhance the visit experience, but all the basic interactions among the users

of a museum and the museum content e.g., preparing a new exhibition. To that end, they

implemented specific services which are designed for the museum personnel which help

them to perform common everyday actions and other services which are designed to im-

prove visitors’ experience. Some museums also offer visitors the opportunity to download

audio guides or additional information on their smartphone (see section 2.2). Other mu-

seums offer their visitors a mobile guide which can be downloaded as an app. Othman

et al. (2018) conducted an empirical study of visitors’ experience at Kuching Orchid Gar-

den. They designed, developed and evaluated a mobile guide application by comparing

visitors’experience with and without the aid of the mobile guide application.

So far, this chapter only presented research dealing with the actual visit of a museum.

However, as mentioned in the work of Falk et al. (2016), the museum visit begins long

before arriving at the museum and continues long after the visit. For this reason Petrelli et

al. (2017) have developed a system that creates a tangible data souvenir for a museum’s

visitors so that they stay engaged with the museum even after the visit. The approach

of Petrelli et al. (2017) here is that the personalized, tangible data souvenir acts as a kind

6

2 Related Work

of bridge between the physical, personal experience of the museum visit and the digital

online experience of staying engaged with the museum. For this purpose, their system

dynamically records the visit by logging information such as where the visitor is at partic-

ular points in time and what exhibits the visitor engages with. This data is then processed

to create the personalized souvenir in form of a card on which the museum visit is repre-

sented.

In addition to the already mentioned approaches for museums, there are also some other

approaches that can improve a visitor’s experience. Kosmopoulos and Styliaras (2018)

conducted ”A Survey on Developing Personalized Content Services in Museums”. In their

work, they surveyed the latest advancements in the fields of indoor location, recommen-

dation systems, guidance systems, content storage and presentation. All these areas are

nowadays important for further personalizing and improving the visitor experience in a mu-

seum.

As the work of Kosmopoulos and Styliaras (2018) shows, a critical part of an MDE in muse-

ums is the location awareness. There are some works dealing with this area. For example,

the SoD ToolKit (Seyed, Azazi, et al. 2015) allows users to be localized in a multi-device

setup by using a Microsoft Kinect. Especially when integrating the visitors’ OD, the device

needs a possibility to know when a new exhibit is in range. An already tested approach

to identify the position of users in museums is the work of Tesoriero et al. (2008). In their

article, they propose a conceptual model for art museums that supports an automatic posi-

tioning system based on the technology RFID. Hardy et al. (2010) propose a way for users

to directly interact with their phones and static (e.g., posters) or dynamic (e.g., projections)

displays by combining these displays with NFC. Broll et al. (2011) also use the NFC tech-

nology to explore the design of interaction techniques for dynamic NFC-displays that go

beyond the common touch select interaction.

Urano et al. (2017) developed an indoor location estimation method using mobile Bluetooth

Low Energy (BLE) tags, which are worn by people and BLE scanners, which are attached

to a building. Lim et al. (2007) use smart WIFI antennas to localize mobile targets. To

that end, the antennas receive the signal strength from a mobile target and send the signal

strength information to a data processing station. Nishiyama et al. (2017) developed an

advanced floor recognition method by using WIFI access points and the barometer hard-

ware in smartphones. To provide a more reliable and robust detection method Wang et al.

(2011) developed an indoor localization algorithm with WIFI and Bluetooth. Finally, Lazik

et al. (2015) and Murata et al. (2014) use ultrasonic sound to provide an accurate indoor

positioning system.

7

2 Related Work

2.2 Possible Applications

This section presents various interactive exhibitions which were or are an integrated part

of museums. The focus here is not only on exhibitions that implement an MDE or apply

the BYOD concept. All museums were considered that implemented some form of an

interactive exhibition. Some museums use the BYOD concept to e.g., offer the user a

guided tour in form of an downloadable app. Others use Augmented Reality (AR) in their

app to show the visitor a storyteller. Still other museums have no app at all but implemented

a form of an interactive exhibit. In the following the interactive exhibitions of the museums

and which technologies and concepts they used are described.

The first example for an interactive exhibition is part of the Museum Albrechtsburg Meissen

in Germany (Blumenstein, Breban, et al. 2019). For this museum, the developers called

Fluxguide created an iOS and Android app for usage on the user’s own devices. So the

exhibition emplifys the BYOD concept. The app provides a guided tour for deaf visitors

using videos in German sign language. The visitors can mark their favorite exhibits and an

description will be then sent to their email account. The localization works through manual

entry of a number, and the app can also be used if you are not in the exhibition.

Another museum using the BYOD concept is located in the United Kingdom and is called

Bletchley Park (Blumenstein, Breban, et al. 2019). The museum offered a multimedia

guide for the family exhibition "Bletchley Park". The exhibition included an adult tour and

a family tour. The adult tour included an audio guide with Historian Jonathan Foyle. The

family tour included code-cracking challenges, puzzles, and storyteller parts. In addition,

the exhibition offered numerous video contributions from people who worked at Bletchley

Park and saved many lives during wartime. The multimedia guide is part of an iOS app

which the users can install on their own device. Furthermore, the museum offers multiple

rental devices.

The London’s Natural History Museum app is another example of an interactive museum

tour using the BYOD approach (Museum Tour Guides 2019). In addition to room plan

information, it offers information about all exhibits, in the form of images and text. The app

also provides information about current museum events and includes interactive quizzes.

Furthermore, the app is fully functional even outside of the museum.

The Canadian Museum of Human Rights does not offer its visitors interactive exhibits but

an app with self-guided tours in English and French (Blumenstein, Breban, et al. 2019). The

contents are presented as text or as an audio guide. It also includes a translation into sign

language. Bluetooth beacons trigger the localization. The user can also enter the exhibit

number manually. In addition, the app offers an interactive map that shows the location of

the visitor and includes a navigation system (text-based). The exhibition includes so-called

”Hot Spots” which are blue points on the floor and trigger an AR panorama view.

8

2 Related Work

The Celtic Museum Hallein in Austria also offers an app with the BYOD concept (Hallein

2019). Visitors can use the app AR markers, which are distributed in the museum (see

Figure 2.1). If you hold your smartphone over the mark, the display shows a celt that tells

different stories of his life.

Figure 2.1. Picture of the AR marker in the Celtic Museum Hallein (Hallein 2019).

Furthermore, the app ”Wiener Wasserweg” provides a virtual tour guide for the Old Danube (Wiener

Gewässer 2018). The tour is a total of 13 km long and offers 22 stations. The visitor can

either complete the tour on foot or by bike and each station offers information on the his-

tory, wildlife and use of the Old Danube. It also provides the user with some information on

beach baths, lawns, restaurants and boat rentals at their current location. In addition, the

app offers a quiz mode for playful learning.

The Gotlands Museum app offers its visitors a guide which displays a map of the mu-

seum (gotlandsmuseum.se 2019). On the map, the user will find various locations for which

images, text, audio, 360 content or a quiz is available. The app also offers predefined tours

of the museum from which the user can choose.

The Maritime Museum in Rotterdam also offers its visitors a tour guide in the form of an app

with the BYOD principle (Maritime Museum 2019). The app provides visitors with two tours

which include additional information in the form of films, animations and digital souvenirs.

One tour is a tour of the museum harbor. Here, the app displays a map and is uses GPS

to track the current position of the visitor. The visitor receives information about an exhibit

9

2 Related Work

by scanning the respective QR code in the app. The second tour is an audio tour in which

the museum staff tells the visitor something about the individual exhibits.

The Kennedy Space Center also has an official app for their museum (Kennedy Space

Center 2019). The app does not offer a tour guide directly, but acts as a kind of navigation

aid. The visitor finds all offered exhibits in the app and can receive directions to them. In

a map view, they see where they are currently located and where the exhibit is. Here, the

app uses GPS for position finding. In addition, the app provides information about events,

shows and opening hours of the exhibits. Furthermore, it offers a way to save the exhibits

that one likes the most in a favorites list. Consequently, visitors can read the information

about the exhibits at home.

The next app is not directly linked to a museum but to the city of Wels (wels.at 2019). The

topic of the Roman period of the city was playfully adapted with the app "Heroes of the

Roman Age". Emperor Hadrian arrives in Ovilava to put together a delegation of heroes to

help Rome out of the crisis, as he makes his way through the city finding his allies at nine

different locations. The heroes of Ovilava, in addition to historic short explanations, offer

animated augmented reality stagings, such as the bronze equestrian statue of a Roman

emperor on the occasion of the departure for the Traun. In order for the visitor to find

the individual locations, the app contains a map that shows the locations of the allies. In

addition, the app includes various quizzes for each station with which the visitor can earn

points.

The "Deutsches Technikmuseum" in Berlin also has an app that can be installed on the

visitors’ own devices (Deutsches Technikmuseum 2019). The app offers three different

tours that can be experienced as a quiz tour or as an audio tour. The quiz tour includes

quirky quiz questions and selfie tasks, and in the end, visitors are even rewarded with a

virtual certificate. Each exhibit has its own number which the visitor must enter in the app.

For every correctly answered question the visitor receives points. In addition, the app is

available in three different languages and even offers a school class mode. Following the

quiz tour, the teacher will receive a summary of the results of the class in the form of a link

via e-mail.

The "Deutsches Museum" in Munich also has an app with various functions (Deutsches

Museum 2019). On the one hand, the app offers an interactive map for all levels of the mu-

seum. On the other hand, the app offers various tours that visitors can do in the museum.

Each exhibit contains text, images and audio. In addition, the visitor can add the exhibits

to a favorites list and these list can be used for a personalized tour through the museum.

Furthermore, the app provides information about current events and performances in the

museum and if the visitor wants, the app even sends a push message as a reminder.

The BMW Museum also offers similar functions in its app (bmw-welt.com 2019). With

10

2 Related Work

the help of the BMW Museum app, visitors can experience selected aspects, themes and

epochs of the brand’s history in all its details. In addition, they can be guided through the

individual houses in a personalized order. The respective explanations are presented on

the visitor’s own smartphone as texts or audio. Alternatively, content can also be livened

up by image motifs of the exhibit. An interactive map display helps visitors better navigate

their way through the departments.

Until now we saw several museums offering their visitors an app with the BYOD ap-

proach (Blumenstein, Breban, et al. 2019). Now we focus on the integration of interactive

exhibits in museums. The first example can be found at the Fort Worth Museum of Science

and History in Texas. The exhibit includes a video wall on which dinosaurs run animatedly.

Children can paint the dinosaurs on a sheet of paper, then scan the paper which will then

present the dinosaur on the video wall in paper style. The Dinos can then be scanned to

display on the Video Wall.

The National Park exhibition of Hunsrück-Hochwald offers its visitors a multimedia exhi-

bition of the national park (Hunsrück-Hochwald 2019). The exhibition includes four core

themes which are presented in an unusual and effective way. These themes reflect the

National Park with its diverse tasks, its networked forests, its unique moors and the differ-

ent landscapes and habitats. Projections and experimental stations provide insights and

views into nature and its inhabitants. Unfortunately, this interactive exhibit does not support

BYOD and, moreover, the devices are not interconnected.

A museum that includes several interactive exhibits is the House of Science in Vienna (Blu-

menstein, Breban, et al. 2019). One exhibit is called the Mars Explorer, where two Lego-

built Arduino cars can be controlled with a tablet. The cars drive on a stretch of cardboard

and have the goal to grab a ball and bring it to the other end of the track. Another example

is the info table. There are two areas on a table which are marked with a frame. Around the

table are several animals. If you place an animal in one of these frames, the living space of

the animal appears in a virtual space on three walls in the room via a projector. By turning

the animals, also the virtual space turns. Furthermore, different videos are displayed on

the walls. If the user moves an animal closer to the wall, the corresponding video will start

to play. The last example from this museum is a quiz. The quiz question is displayed on

a screen which is in front of the visitor. On the floor in front of the visitor are three plates

with numbers. The answer options can be selected by the visitor stepping on one of these

plates. The faster they are, the more questions they can answer in a given time.

The art-historical museum in Vienna also offers an iOS and Android app that can be in-

stalled on the visitor’s OD (Blumenstein, Breban, et al. 2019). The app offers visitors six

different tours of the museum. Pictures and written instructions indicate the path of the

tour. The app also includes a museum map, but without a current location. During the

tour, the visitor is guided to a specific object in the room and receives information about

11

2 Related Work

it. Figure 2.2 shows how such a tour is displayed in the app. The app is also usable if the

visitor is not in the exhibition.

Figure 2.2. Tour of the art-historical museum in Vienna (Blumenstein, Breban, et al. 2019).

At the museum of Literature in Vienna, users can borrow a loaner to explore the exhi-

bition (Blumenstein, Breban, et al. 2019). The exhibition offers a multimedia guide that

includes video, audio, and text information. The exhibits are triggered by the Near Field

Communication (NFC) technology.

An example of an active exhibit using a multi-touch table can be found at the Hamline

University’s Center for Global Environmental Education, St. Paul Minnesota (Blumenstein,

Breban, et al. 2019). This is a multi-touch table application designed for 1-4 users. The

desktop adapts to the number of users. Each user sees a geographical map of the Mis-

sissippi and can navigate on it (see Figuer 2.3). The application includes predefined cat-

egories. If the user selects one, then the points of interest for that category are displayed

on the map. The dots offer multimedia content such as pictures, 360° panorama pictures,

or videos. Sometimes there are also quizzes for different topics.

Finally, the Space Guard Academy of the Lowell Observatory in Flagstaff Arizona will be

presented (Blumenstein, Breban, et al. 2019). This is a gamified exhibition. In the exhi-

bition, visitors are cadets of a fictional Space Academy. The goal is that visitors learn as

much as possible about asteroids. The exhibition offers six different stations and at the end

12

2 Related Work

Figure 2.3. The multi-touch application of the Mississippi river (Ideum 2019).

a hall of fame. At each station, visitors can collect points and badges to increase their rank.

To identify the users, the exhibition uses ID cards. This is a card on which a barcode is

printed. In the beginning, the visitor can create a new character and then receives his/her

ID card. Each station contains a reader with which the ID card must first be read before

the station can be used. The interactive stations always use a combination of screens and

touchscreens. An example of a station is the asteroid race. Here, visitors must select one

of five asteroids, all of which have a different orbit. Players should choose the asteroid

which will hit Jupiter the fastest (selection on a tablet / small touchscreen). Every five min-

utes a race starts and the visitor sees if he/she has interpreted the orbital data correctly

(race on a 75 ” screen). At the end of the exhibition the visitors can see the hall of fame

where visitors can see their profile and take a picture of themselves.

These museums were just some examples which were found during the research of the

MEETeUX project and this thesis. The website of the MEETeUX project offers a visual-

ization which gives an overview of the researched interactive installations in museums1.

As one can see, there are many museums which offer their visitors an app to guide them

through the exhibition. The app offers additional content, and the museums use different

approaches to trigger the different exhibits. In addition, there are various types of active

exhibits that work with a variety of technologies. Whether it is a projection that can be

interacted with using a Kinect camera or a multi-touch table that can be used to implement

a variety of applications. However, no museum really combines the use of an app installed

on the visitor’s OD with the active exhibits of the exhibition.

1http://meeteux.fhstp.ac.at/assets/matrix/

13

3 Technical Concepts & Possibilities

The previous chapters presented different interactive exhibitions which are already imple-

mented in museums. Additionally, the terms multi-device ecology and BYOD was defined.

As the previous chapters show there a lot of different applications which can be included

in a multi-device ecology. Therefore, it depends on the needs of the museums which pos-

sibilities should be included in their multi-device ecology.

This section now focuses on a basic concept of a multi-device ecology (MDE), which was

presented in the paper of Blumenstein, Kaltenbrunner, et al. (2017). We tried to develop a

concept which offers a basic set of possibilities but which can easily be extended. There-

fore, this section will also present different possibilities which such a system could include

and also technical concepts which can be used for the different parts of the multi-device

ecology.

3.1 Basic Concept

By design, a basic concept for a multi-device ecology should include the possibility for

different devices to communicate with each other. In addition, such a concept should

include an instance that keeps track of the status of all exhibits and visitors. Blumenstein,

Kaltenbrunner, et al. (2017) called this instance Guide of Devices (GoD). The devices

include the visitors’ own devices and different groups of exhibits. For visitors who want to

enter the multi-device ecology with their own device they need to install an app or open it

in the browser at the entrance of the museum.

The exhibits in a museum can be categorized into three different groups, namely passive

exhibits, interactive exhibits, and active exhibits. Passive exhibits only include some addi-

tional information for the visitor, e.g., text and images for a display item in the museum. For

this kind of exhibit, no further computers are needed. The visitor’s own device (OD) dis-

plays further information when the OD receives a trigger from a display item. What these

triggers could be will be described further in section 3.4.

The next group is the interactive exhibits. This group includes exhibits where the visitor

can interact in some kind with the display items in the museum without the need for an

additional computer. An example could be an augmented reality overlay of an old text.

14

3 Technical Concepts & Possibilities

When the visitor holds their smartphone over the exhibit, an overlay appears that displays

the text, which could be challenging to read or perhaps written in another language, in a

readable computer font.

The last group is active exhibits. These exhibits require an additional computer and offer

the visitors the possibility to do something actively. An example could be a quiz. The visitor

comes to a display, and the OD receives a trigger for the active exhibit. The visitor now

connects to the quiz server and can then participate in the quiz by answering the ques-

tions, which are displayed on the screen, on their own ODs. Another example could be a

multi-touch table where the visitor could explore a digital copy of a display item, or he/she

could participate in a collaborative game. In this scenario, the visitor puts his/her phone on

a designated position on the touch table. The OD again receives a trigger from the touch

table an sends a message to GoD. GoD then checks if the multi-touch table is free and if

so it sends a message to the multi-touch table to notify the table that there is a new visitor

joining.

As one can see, there are a lot of different possibilities for the different groups of exhibits,

but mainly for the active exhibits it is crucial that there is an instance which tracks the status

of these exhibits. If an active exhibit has a problem or is for whatever reason crashing, GoD

should know about it. Only then can GoD send a message to the visitors’ devices to notify

them that the exhibit is currently unavailable. Furthermore, GoD can tell visitors if the active

exhibit is currently free or if it is occupied.

Apart from the exhibits, GoD also offers a lot of possibilities to track and manage the status

of the visitors. With GoD, we could track the visitor’s current position, which would give de-

velopers further location-based possibilities. The system could then, for example, include a

navigation system with which the visitor could find more exciting exhibits or specific places

he/she needs, e.g., the toilet. Furthermore, the MDE could offer various visitor tours for

the museum. If a visitor is interested in a tour, he/she starts the tour on their OD and the

OD, with the help of GoD, navigates the visitor through the different rooms of the museum.

This could also include some crowd control. If GoD has the possibility to track the visitors,

it could notify a visitor if there are many people in the next room. Then the OD could offer

an alternative route. Of course, in this scenario, GoD could only track the visitors who are

using the museum’s app.

Another option would be tracking group members. Museums are often visited by groups,

e.g., families, tourists, or school classes. If all the members of such a group would had a

smartphone, we could also include these groups into the multi-device ecology. Blumen-

stein, Kaltenbrunner, et al. (2017) proposed a method to use the museum’s own group

tickets to form a group. The group ticket could include a QR-Code which the group mem-

bers have to scan with their ODs and GoD adds everyone to a group for the MDE. Of

course, there are also other possibilities to form groups, but the important thing is that

15

3 Technical Concepts & Possibilities

these groups offer new types of interactions for the visitors. For example, the MDE could

include exercises for pupils which the teacher as the group leader could manage. If the

teacher starts a new exercise, the pupils have to find different parts of the exercises in

the museum and are therefore roam around. To keep an overview of the pupils, the MDE

could provide the teacher with the possibility to track the visitors while they are doing their

exercise. So the teacher always knows where his/her pupils are, or GoD could even send

the teacher an alert if one of the pupils leaves the museum.

Of course, this concept is not limited to schools. Also families could just split apart to see

different parts of the museum, and in the meanwhile, they can keep track of the other family

members’ location.

The concept of the groups would also offer the possibility for different collaborative games

or exercises. An example could be a game where the members of a group start a game at a

multi-touch table and then have to gather different parts to accomplish the game. When all

parts are gathered, they meet again at the multi-touch table and put together the different

parts they found. As a reward, they could then unlock a particular area in the app or maybe

get a special badge.

Another way how GoD could support the visitors is a recommendation system. A lot of

online shops suggest their users additional items which they may also like. Usually, these

websites call it ’Other users also liked’ or something similar. Just like these online shops,

the app could offer the possibility to like the various display items in the museum and then

GoD could send the visitor suggestions for exhibits he/she could also like.

3.2 Key Elements

This chapter will present technical possibilities for an MDE with the focus on BYOD. For this

purpose, the basic concept of Blumenstein, Kaltenbrunner, et al. (2017) was presented

which includes various concepts for an MDE. This section now presents the key elements

for the MDE of the MEETeUX project. After introducing the key elements, this chapter will

explore the different ways to implement some key elements.

Server The server should know the status of all exhibits and the visitors’ OD. Furthermore,

it decides if a user can interact with an exhibit or not. Respectively, the server handles

the communication between the exhibit and the OD. It also stores all relevant data

for the exhibition e.g., the contents of the exhibits.

App The app should be avaible for Android and iOS. The app should provide all function-

alities which are necessary for the exhibition. Therefore, the app should provide a

general user interface, the functionality to interact with the various exhibits, a way to

16

3 Technical Concepts & Possibilities

register as a user, access to the device’s hardware and additional features like the

option to show Augmented Reality content.

Guest Support The MDE should provide the user with an option to register as a guest

user. Guest users could get a limited experience of the exhibition. Therefore, a guest

user should always have an option to register as a real user afterwards.

Exhibits The exhibition should include different types of exhibits. All exhibits will provide

some kind of functionality in the app. Some only offer additional information and

others provide the visitor some kind of interaction. The visitor is uses his/her OD to

interact with the exhibits. For this purpose, the OD uses the protocol TUIO. ”TUIO is

an open framework that defines a common protocol and API for tangible multitouch

interfaces. The TUIO protocol allows the transmission of an abstract description of

interactive surfaces, including touch events and material object states” (Kaltenbrun-

ner 2019).

Device Communication The app needs the possibility to communicate with the server

and the server with the exhibits. Therefore, this chapter will introduce different tech-

nologies for device communication. Here, the focus is on technologies that also allow

the server to send a message to the visitor if necessary. So the chapter focuses on

bidirectional communication approaches.

Location Awareness The app needs a possibility to know when there is a new exhibit in

range. Therefore, this chapter presents various active and passive location triggering

approaches which are a feasible location awareness approach. Furthermore, each

time the app discovers a new exhibit it notifies the server of its new position. The app

should also provide an option to always show the visitor his/her nearest location.

Navigation If the server is aware of the visitors current location the app can provide a

navigation system. This could be only a map of the museum where the user sees

his/her current location or a full navigation system where the visitor is guided to the

designated location.

Groups The MDE should support at least one possibility to generate groups of users. The

groups should provide the visitors additional possibilities for collaborative interactions

or localization of the other members.

Recommendation System The app provides a possibility for the user to like exhibits in

which he/she is interested. The MDE uses this information to suggest further exhibits

of interest to the user.

Multi-Language Support The MDE should be able to provide all contents in multiple lan-

guages. This includes the app as well as all exhibits.

17

3 Technical Concepts & Possibilities

3.3 Device Communication

As one can see a multi-device ecology could include a lot of different features, but one

essential part is the communication between the devices. The OD must be able to commu-

nicate with GoD, but at the same time, it also has to communicate with the active exhibits.

However, it is not enough that only the OD can communicate with the other devices. GoD

also needs a way to tell the users if the status of an exhibit changed or when it comes to

group exercises GoD needs a way to send messages to a group.

In addition, the active exhibits need a way to send messages to GoD but also to commu-

nicate directly with the users. That is because the exhibition could have an active exhibit

where the visitor has to do something on his/her smartphone, which has an effect on e.g.,

a multi-touch table. An example could be a drawing game where the users have to draw

something on their smartphone, which should immediately show on the table. In this ex-

ample, it would produce an additional delay if the drawing data is send to GoD and GoD

then transmits the data to the table. This could be crucial for real-time games or exercises.

In typical web applications, the client sends a message to a server (e.g., REST API), and

the server responds with resources or data. This means that in the traditional client-server

model, the server has no way to send data to the user without a request of the client. This

approach wastes time and ensures longer load times, which is excellent for standard web-

sites and various apps, but in our approach, it could be fatal.

Therefore, there are some approaches to overcome the overhead of the traditional pro-

cedure. The first one is the ’traditional’ polling approach. This is more like an easy

workaround where the client sends requests in specific time intervals, and the server sends

a response for each request (see Figure 3.1). However, based on the interval, it again

takes some time until the client gets a response and furthermore, multiple requests and

responses produce much overhead.

A more advanced approach is the long polling concept. When using long-polling, the

browser continually sends requests to the server, but the server only responds if there

is new data to be sent. This approach is visualized in Figure 3.2. This approach is already

better in terms of all requirements, but still causes some overhead.

The third approach is called Websockets. Websockets use their own protocol to provide

bidirectional communication between client and server. The client sends a request to the

server to upgrade a standard HTTP(S) connection to a WebSocket connection. If the

server supports Websockets, it replys with a success message, and then the connection

is upgraded to a WebSocket connection (see Figure 3.3). After that, the client and the

browser can send data frames in both directions over a TCP socket. This protocol is

especially useful for scenarios where messages need to be exchanged at a high frequency.

The downside of this approach is that not all browsers already support Websockets.

18

3 Technical Concepts & Possibilities

Client Server

request

waiting 2 sec

response

request

response

Figure 3.1. Schematic representation of how ’traditional’ polling works.

3.4 Location Awareness

As mentioned before, the app needs a location awareness method. The app is used to

display the content for the exhibits. Therefore, it needs a method to know when a new

exhibit is nearby. This section introduces different location awareness technologies found

in the literature review and analysis of the various museums. The technologies were split

into two groups. The first group deals with active methods of position determination. This

means that the user has to trigger the location by himself/herself actively. The second

group deals with passive technologies. For passive technologies, the user does not have to

take action. Instead, the app uses a technology in which it independently and automatically

determines the position in the exhibition.

3.4.1 Active Location Triggering

The first approach and also a straightforward one, is the manual input of a code. For this

approach, each exhibit has a unique code which can be e.g., simply a number like 125.

The user finds the number on the exhibits and enters it in the app. The app then displays

19

3 Technical Concepts & Possibilities

Client Server

request

request

request

event

response

Figure 3.2. Schematic representation of how long polling works.

the content of the exhibit. Some museums use this approach as a backup if the primary

technology is not completely reliable or inaccurate. A museum which uses this approach

as a backup is the Canadian Museum of Human Rights (see figure 3.4).

The next active method is the use of optical markers. Optical markers can be anything,

such as a barcode or a QR code. Another possibility is the use of augmented reality mark-

ers such as those used in the Celtic Museum Hallein. For their exhibition, they developed

their markers to make a Celt appear above of the marker and tell a story (see Figure 2.1).

Optical markers offer the possibility to store various data in the marker, which are then

interpreted by the app. However, in any case, the user must always actively scan these

markers. Therefore, the app needs access to the camera of the OD.

Finally, there is the Radio Frequency IDentification (RFID) protocol, which is an automatic

identification method. It is a contactless communication technology that provides informa-

tion for identifying objects. An RFID system consists on the one hand of a data carrier

(called transponder or tag) and on the other side of a read/write device with an antenna.

RFID works with weak electromagnetic waves that are emitted by a reader. If you bring a

transponder into the range of this antenna, you can read information without contact from

the memory of the transponder or store data on it (tagnology.com 2019).

One implementation of this protocol is the Near field communication (NFC) standard. NFC

is an international standard for the wireless exchange of data over short distances (10-20

cm). Nowadays, many smartphones are equipped with the technology ex-factory, others

can be retrofitted with an NFC sticker, which is attached to the back of the device and re-

20

3 Technical Concepts & Possibilities

Figure 3.3. Schematic representation of how Websockets work.

places the built-in NFC chip (congstar.de 2019). It should also be mentioned that iOS apps

can only access the NFC chip from version 12 onwards. For data transfer via NFC, the

smartphone or tablet is held to a preprogrammed NFC tag that triggers a specific action on

the OD. Even if NFC works contactless, it is natural for most users to put the smartphone

directly on an NFC field. Therefore, and because of the short-range, this technology has

also been classified in the active methods.

3.4.2 Passive Location Triggering

The first passive location triggering approach is Bluetooth. Most of today’s smartphones

have a Bluetooth chip with which they can receive data from Bluetooth transmitters (bea-

cons). A beacon is a small Bluetooth transmitter which repeatedly transmits a single signal

which the OD can receive if it is in range. The signal of the beacon is a combination of

letters and numbers which is transmitted in a regular interval of approximately 1/10th of

a second (Kontakt.io 2019). A manufacturer of such beacons is the company Kontakt.io,

which also offers an SDK for iOS and Android to receive the beacon signals in a native app.

The beacon also has the ability to wake up apps even if the app is not actively running. To

21

3 Technical Concepts & Possibilities

Figure 3.4. Manual code input in the app of the Canadian Museum of Human
Rights (Tristan Interactive 2019).

sum up, the beacons are simply broadcasting an ID number that is then used in the OD’s

app to trigger the exhibits. Beacon scanning requires Bluetooth and the location services

to be enabled on the smartphone.

Another but also more complex approach is the triangulation of a device with WIFI hotspots.

As already mentioned in chapter 2 Lim et al. (2007) developed a WiFi localization system

for an indoor environment like a museum. They use smart antennas to receive signal

strength from a mobile target. Afterward,d the signal strength information is sent to a

data processing station which combines the received data to find the direction of arrival of

the signal and triangulate the mobile target position (Lim et al. 2007). Therefore, in this

approach, it is not the OD which is aware of its location. Instead, it is necessary to forward

the information to the server, which then forwards the information to the ODs.

The final approach is the usage of ultrasonic sound. As mentioned before Murata et al.

(2014) and Lazik et al. (2015) use this approach for an indoor positioning system, but cur-

rently, there is no basic setup which could be easily integrated into an exhibition. Therefore,

it would be necessary to develop ultrasound transmitters and also to program a library that

can receive and interpret these signals. In addition, not all smartphone microphones can

receive ultrasound signals. Therefore, this approach is not very practical for older devices.

22

3 Technical Concepts & Possibilities

3.5 OD/App

When one is talking about app development, there are three different approaches, namely

web development, hybrid development, and native development. As the name suggests,

web app development deals with apps which are developed for the web and are loaded in

a web browser. There are a lot of different frameworks like Angular.js, Vue.js, React, and

many more, but all have in common that they have only minimal access to the hardware of

the phone. This is because they are loaded in a web browser and therefore always have

limited access to the PC’s or phone’s hardware.

In the last section, various location tracking approaches were presented, and as we could

see, all of them had to have access to a part of the hardware. While access to the camera is

now also possible through the browser (with the user’s consent), access to other hardware

such as Bluetooth or the microphone is still not possible. Therefore, web applications are

not the best choice for the development of an MDE.

Unlike web applications, hybrid apps are able to access the hardware of smartphones.

Although hybrid apps are often developed using web technologies, they are then compiled

into a native app and therefore have access to the hardware. So, hybrid apps have the

advantage that the app has to be developed just once and can then be compiled to both

iOS and Android. Therefore, hybrid apps would be quite suitable for use in an MDE.

Native apps refer to applications on mobile devices that have been specially designed and

developed for the operating system of the respective device. So they are developed to

run on a device with an operating system like iOS or Android. Currently, iOS applications

are usually developed with the programming language Swift and Android applications with

the language Java or Kotlin. Since these apps are developed in the native programming

language of the operating system, the apps have access to the hardware of smartphones.

The significant disadvantage of the development of a native app is that the app must be

developed for iOS and Android separately. It should also be considered that iOS apps can

only be compiled on a Mac computer.

In addition to the access to the hardware, one should always keep in mind what the app

should be able to do. Earlier it was already mentioned that there are interactive exhibits

that include, e.g., augmented reality. Additionally, the app might also be required to include

a small game? In both cases, the use of a game development environment such as Unity

could be useful. Blumenstein, Kaltenbrunner, et al. (2017) proposed a setup where they

developed a mobile project in Unity, which can then be compiled to a native iOS or Android

app. It is then possible to extend the exported native app with additional content. Unfor-

tunately, Unity exports two native apps, which would mean that we would have to develop

additional content for both iOS and Android. To avoid this Blumenstein, Kaltenbrunner,

et al. (2017) used a native web view in which e.g., a website could be shown. However, the

23

3 Technical Concepts & Possibilities

Figure 3.5. Proposed app structure of Blumenstein, Kaltenbrunner, et al. (2017).

webview can also be used to display a web application. So Blumenstein, Kaltenbrunner,

et al. (2017) developed all parts, which do not include the access of hardware or something

which has to be developed in the Unity, with the web framework Angular. So the bulk of the

app had to be developed only once. The Angular project was compiled and then added to

the native Unity project. The Unity app was extended so that the Unity part is not started

immediately. Instead, the Angular project is the starting point, which is displayed in the web

view. The added part of the native app now functions as an interface between the Anulgar

project and the Unity part as figure 3.5 shows.

If the angular project needs to access the hardware of the smartphone, it sends a mes-

sage to the native interface. The native part accesses the hardware and then sends the

needed data back to the webview. Furthermore, if the user reaches an interactive exhibit,

the Angular project sends a message to the native part, and the native part then loads the

corresponding unity scene were the game or augmented reality part is displayed.

In this concept, the build process is more complicated, as usual. The reason is that the

Unity project always deletes the whole app folder while exporting. Therefore, the first step

is always the export of the Unity app. Then the app has to be modified with the interface,

the webview, and the hardware features. Then the Angular project has to be compiled and

added to the native app. This process has to be done each time there is a change in the

unity project. If there is only a change in the Angular project, then only this part needs to

be recompiled and re-added to the native app.

24

4 Proof of Concept

The previous chapters presented similar work dealing with the field of MDE and BYOD.

This work also discussed multiple different interactive exhibitions which are already imple-

mented in a museum. Furthermore, the last chapter showed a lot of different possibilities

and a technical concept for a multi-device ecology. This chapter now presents the actual

implementation of an MDE. As a follow-up project of the MEETeUX project, we developed

an interactive exhibition including an MDE for the monastery of Klosterneuburg1. The in-

teractive exhibition is part of the annual exhibition of the year 2019 named ’The Emperor’s

New Saint’. The exhibition enables visitors to experience history, ranging from local con-

flicts to political decisions concerning the emperor’s realm. The app allows visitors to take

on the role of a person living in emperor Maximilian’s time. Three selectable storytellers,

namely Emperor Maximilian, Ladislaus Sunthaym and Till Eulenspiegel give insights into

different aspects of the same story.

4.1 Key Elements

In the previous chapter the key elements of the MEETeUX project were described. For

the exhibition of Klosterneuburg only a subset of these elements were chosen and imple-

mented. Part of the research focus of this thesis is the question of how to implement these

elements and integrate them into an MDE. Therefore, the following listing shows for each

key element the corresponding research question.

Server How can one implement a server which always knows the status of the exhibition

including all exhibits and the visitors ODs? More specifically, how can the server

handle the communication between all devices and furthermore, decide if a user can

currently interact with an exhibit or not?

App How does an app have to be designed so that it offers the possibility to access the

hardware of the device, offers a location awareness approach, provides a general

user interface and includes the functionality to interact with the various exhibits?

Guest support How can the MDE provide an option for visitors to use the app as a guest

1https://www.stift-klosterneuburg.at

25

4 Proof of Concept

user and still provide the visitor with the same functionality as registered user?

Exhibits How can the MDE provide different types of exhibits and also include a possibility

for the communication between the exhibit and the server or the app? Therefore, the

communication protocol will not be limited to the TUIO protocol.

Device Communication Is the WebSocket technology a sufficient approach for bidirec-

tional communication between all devices in a MDE?

Location Awareness Is the usage of Bluetooth and Bluetooth Low Energy beacons a

sufficient approach for the location awareness?

Multi-Language Support How must the MDE be designed to give visitors the opportunity

to experience the exhibition in different languages?

The following sections will show how these key elements were implemented in the proof

of concept. First, the concept of the MDE for Klosterneuburg is described and then each

part of the MDE is described in detail. Chapter 5 contains the evaluation of the MDE and

shows potential problems found in the key elements.

4.2 Concept of the Multi-Device Ecology

The multi-device ecology consists of three parts. The first part is the server which we call

Guide of Devices (GoD). The second part is the own device (OD) of the users, and the

last part is the different exhibits. Figure 4.1 shows the schematic structure of the MDE,

which was implemented at the monastery of Klosterneuburg. As mentioned in the previous

chapter, the server is the instance which knows about the status of all users and exhibits.

GoD stores all the necessary data in a SQL database and also manages the content which

will be loaded in the app. As the figure shows, GoD is connected with all the visitors’ ODs

and exhibits via a WebSocket connection. Also, the ODs are connected via a WebSocket

connection if they join an active exhibit. This allows bidirectional communication between

all active elements in the multi-device ecology.

GoD is connected to the Internet, and therefore, it is possible to use the app even at home.

The only exception is active exhibits. The active exhibits have their own Websocket Server

running so that the ODs can directly connect with them. Though, the active exhibits are

only accessible within the internal network. Therefore, external access to active exhibits is

not possible. It follows, of course, that the ODs must be connected to a WLAN which is

connected to the same local network as one of the active exhibits.

To trigger the different exhibits, we used Bluetooth low energy beacons (BLE beacons).

These beacons broadcast their identifier to all nearby devices whereby the device is able to

26

4 Proof of Concept

Figure 4.1. MDE structure of the monastery of Klosterneuburg.

perform actions when in close proximity to a beacon. We used the beacons of the company

Kontakt.io2 (see figure 4.2). Kontakt.io offers a library for iOS and Android to receive the

encrypted data sent by the beacons. The beacons transmit quite a lot of different data,

e.g., a universally unique identifier (UUID) or a minor and major value. It is not possible to

change the UUID, but it is possible to change the minor and major values. We used these

two values to identify all of our locations. To do that we used the minor value as the id of

the location and the major value as the parent id of the location. The different locations

are ordered in a hierarchical tree structure. At the top is the museum itself, next are the

different sections and finally the exhibits themselves. The assignment of the IDs for the

different locations will be explained in more detail in section 4.5.

In total, the exhibition includes 35 different locations. Figure 4.3 shows a plan of the mu-

seum and the exhibition. Each color represents a section, and each number (e.g., 1.1 or

2.7) represents an exhibit. The visitors start at the entrance, which has the color red and

start with the exhibit ”1.1”. The museum and exhibition are designed in a way that visitors

2https://kontakt.io/

27

4 Proof of Concept

Figure 4.2. The used BLE beacons of Kontakt.io (Kontakt.io 2019)

just have to follow a path. The path continues from section one through sections two and

three until four. Finally, in section five, the visitors have to go to the first floor. On the first

floor, there are two more exhibits before the visitors leave the museum by the exit on this

floor.

In total, the MDE includes three active exhibits which are connected to GoD. The first is a

quiz where an unlimited number of visitors can join, answer questions, and collect points

for a high score list. The second one is a legend game where the visitors can build the leg-

end of the monastery of Klosterneuburg. And the last one is an interactive and explorable

version of the genealogical tree of the Babenberger family. The technical part of these

exhibits is described in more detail in section 4.6.

Figure 4.3. Plan of the museum and exhibitions of Klosterneuburg.

28

4 Proof of Concept

4.3 OD/App

Section 3.5 presented the app structure of Blumenstein, Kaltenbrunner, et al. (2017) where

a native Unity app is adopted to access necessary hardware components and add a Web-

view to display an Angular project. For the app of Klosterneuburg, we changed this struc-

ture by removing the Unity part. We did that because we do not need a Unity part for

the exhibition in Klosterneuburg. For the interactive exhibits, the app only needs a way to

display augmented reality (AR) elements. For this purpose, Vuforia is sufficient, because it

offers a native library3 for iOS and Android. The rest of the structure stays the same as one

can see in Figure 4.4. In the next sections, the different elements of the app are described

in more detail.

Figure 4.4. Structure of the Klosterneuburg app.

4.3.1 The Emperor’s New Saint

This section presents the final app for Klosterneuburg. The screenshots of the application

show the functionality of the app. This thesis only focuses on the technical structure, not

on the user interface itself. If a visitor opens the app, he/she first sees the start screen

(see figure 4.5). In this first screen, the visitor can either register as a new user or as a

new guest user. They can also log in with their user credentials. If the visitor registers as a
3https://library.vuforia.com/getting-started/overview.html

29

4 Proof of Concept

new user, the app receives a token with which all further events will be authenticated (more

information in section 4.4.4). The token is stored in the storage of the smartphone. The

next time the visitor opens the app, it checks if a token exists and if so the token is used to

log the user in again automatically.

Figure 4.5. Start screen of the Klosterneuburg app.

When the visitor is logged in he/she sees the timeline screen (see figure 4.6:a). The

exhibition is structured in six different sections, which can be seen at the bottom of the

screen. The exhibition starts with the section ”The Emperor’s new Saint” and ends with

the section ”Commemoration”. Above the sections, the visitor can see a timeline in which

the user can scroll and which includes all the exhibits of this section. By clicking on one of

these elements, the detail screen of this exhibit can be opened. The arrow button at the

bottom helps the user to find the exhibit closest to them. By clicking on it, the app switches

to the exhibit’s section and is scrolling in the timeline to the designated element.

The first button at the top opens the side menu, which includes four elements (see fig-

ure 4.6:b). In the profile settings, the user can change their information, or when they reg-

istered as a guest user, they can change their account to a real user account. The ”About”

30

4 Proof of Concept

(a) Timeline screen (b) Side menu

Figure 4.6. Timeline screen and side menu of the Klosterneuburg app.

section contains information about the exhibition and the research project MEETeUX. In

the ”Help” section, the visitor can find useful information and a guide of the different parts

of the app. The ”Troubleshooting” section helps the visitor if the app does not work as

intended. It shows the visitor if the app found some kind of problem, e.g., if the user is not

connected to the correct WIFI. The last menu element is logging the user out of the app.

Guest users should be careful with the ”Logout” button because if they log out the stored

token will be deleted and then it will not be possible to log in again with the same guest

account.

The second button which has a shield icon (see figure 4.7) opens the ”Code of Arms”

(COA) screen of the app. In this screen, the visitor can build their own code of arms

which is constructed of four elements, namely shield, charge, helmet and mantling, and

two colors. While all shields are already unlocked when the user registers the other parts

must be unlocked while exploring the exhibition. By clicking on the desired COA part, the

31

4 Proof of Concept

app shows the necessary task to unlock the part. For example, in order to unlock the eagle

charge, the visitor has to switch to the Sunthaym’s perspective on any exhibit. In order

to save the changes locally and at the server, the visitor must click on the save changes

button at the top.

Figure 4.7. Code of arms screen of the Klosterneuburg app.

To show the content of the exhibits, the visitor must click on a location in the timeline. In

the exhibition of Klosterneuburg there are three different types of exhibits, namely passive,

interactive, and active exhibits. Figure 4.8:a shows a passive exhibit. These exhibits con-

tain text, images, and a timeline with important events of the past. The passive exhibits

have three different storytellers, namely Ladislaus Sunthaym, Emperor Maximilian and Till

Eulenspiegel. Every storyteller tells the story from his own point of view.

Figure 4.8:b shows an interactive exhibit. In the Klosterneuburg exhibition, all interactive

exhibits use augmented reality (AR) to display additional content. In the detail view of the

interactive exhibit, the app shows the user how they can use their OD to see the AR con-

tent. To start the AR content, the visitor has to click on the button ”Start interactive exhibit”

at the bottom of the detail view. The AR view shows the visitor a translation or readable

version of the displayed records.

32

4 Proof of Concept

(a) passive exhibit (b) interactive exhibit (c) active exhibit

Figure 4.8. The three different types of exhibits.

The last part of figure 4.8:c shows the detail screen of an active exhibit. The figure shows

the ”Weisskunig Quiz” of the exhibition. Here the user can connect with the exhibit to

participate in a quiz (for more information see section 4.6). At the end of the detailed view,

there is another button to connect to the active exhibit. If the user is not in the right WIFI,

then the app will inform the user as figure 4.8:c shows. The user is also informed if the

exhibit is currently offline or occupied. If none of this is true, then the user can establish a

connection.

4.3.2 The Native Part

For the exhibition in Klosterneuburg a native app for Android4 and iOS5 was developed.

The purpose of the native part is only to access the smartphone’s hardware. As mentioned

before we use the Software Developer Kit (SDK) of Kontakt.io to detect the Bluetooth bea-

cons. In order for the SDK to fully function, the app needs access to the location services

and Bluetooth of the smartphone. Therefore, the user has to approve that the app is al-

lowed to use these hardware functions. When the app starts the beacon scanning, it always

receives a list of available beacons. The first item in the list represents the nearest received

beacon. If the last beacon received does not match the latest nearest beacon, then the

4https://github.com/fhstp/meeteux-android
5https://github.com/fhstp/meeteux-ios

33

4 Proof of Concept

new beacon will be forwarded to the web part. The web part then notifies the user that

there is a new exhibit nearby and automatically scrolls to it in the timeline. It is possible that

a beacon is received only once as the strongest beacon. The beacon information would

then be forwarded to the web part immediately. To prevent this from happening, a Circu-

larBuffer was programmed. The app is now does not use the strongest beacon in the list.

Instead, it adds the new values of the list to the Buffer of the beacons. Then the median

value is calculated for each beacon to determine which is currently the closest one.

It should also be mentioned that in Android, the app itself can configure how often it scanns

for beacons. In iOS, the operating system controlls the beacon scanning rate, which could

sometimes cause the iOS app to take longer to recognize a new exhibit.

Furthermore, the app needs access to the WIFI functionality of the smartphone to check if

the user is connected to the exhibition WIFI. If the user is not connected to the right WIFI,

he/she will not be able to connect to the active exhibits. Therefore, the web part asks the

native part for the WIFI SSID at specific points e.g., when the user wants to join an active

exhibit.

Finally, the native part is responsible for storing the authentication token which the app

receives after the registration or login. The iOS app solves this problem ”by giving your

app a mechanism to store small bits of user data in an encrypted database called a key-

chain” (Apple 2019). In the Android app, we use the Shared Preferences storage. ”The

SharedPreferences APIs allow you to read and write persistent key-value pairs of primi-

tive data types: booleans, floats, ints, longs, and strings” (Android 2019). If the web part

needs the token, it sends a notification to the native part. The native part is accessing

the corresponding data storage and sends back the found token or NULL if no token was

found.

4.3.3 The Web Part

The web part mostly consists of an Angular project. As mentioned before the compiled

Angular project is displayed in a native Webview. The Webview also enables communica-

tion between the web and the native part. This thesis does not cover all parts of the app in

detail but only the the most important ones.

Figure 4.9 shows the concept of the Angular project. As in any Angular project, the view

consists of Angular components. A component can be an entire view or just a pop-up.

Angular is responsible for creating and rendering these components as well as for the cre-

ation and rendering of its children. Angular checks if the component’s data-bound proper-

ties change, and also destroys the component before removing it from the DOM. ”Angular

offers lifecycle hooks that provide visibility into these key life moments and the ability to act

when they occur” (Angular.io 2019). Therefore, the component can e.g., establish a socket

34

4 Proof of Concept

Figure 4.9. Project concept of the Angular project.

connection to the active exhibit when the app routes to the corresponding view by listening

to the ngOnInit() hook.

A component always consists of four different files. The first one is the component.ts

file, which contains the complete source code of the component. The source code of the

project is always written in Typescript. The second file is the component.spec.ts file,

which includes unit tests for the source files. Each source file should have a spec file. The

third file is the component.html file which contains the actual GUI in the form of HTML

35

4 Proof of Concept

syntax. In the HTML file, we can access the data of the source file. Furthermore, Angular

uses data-bound properties to update the displayed DOM of the app automatically. The

last file is the component.css file, which includes all styling elements for the component.

The stylesheet is programmed with the standard Cascading Style Sheets (CSS) format.

Since this app was programmed for a museum, a requirement for the app was to support

multiple languages. In order to be able to display UI components of the app in several

languages, the library ”ngx-translate6” is used. The library offers Angular a translation

service with which the different languages can be defined and easily switched. The texts

for the UI elements are stored in JSON files. For each language, there is one JSON file.

Therefore, there is one file for the German texts and one for the English texts.

The translation service is only responsible for the text in UI components like buttons or

menu items. However, the contents of the exhibits are stored on the server. This has the

advantage that content can be adapted at any time or entire exhibits can be added without

the need for an update. Therefore, it is necessary to download all information about the

exhibits and their contents right after the registration or login. The default language of the

app is German, and therefore the contents are by default downloaded in German. The

user has the possibility to change their desired language. The app then loads all contents

in the new language from the server.

In order to manage the data received by the server, the app stores it in one centralized

state. For this, the app uses Redux7. Redux enables the app to manage the entire applica-

tion state in one object, namely the Store. If the store gets updated, it will trigger re-renders

of the view which observe the state. If a service wants to update the state, it dispatches an

action. The dispatched actions call a function which handles these actions, modifies the

state and returns the updated Store. These functions are named Reducers.

The app uses RxJS to observe the state changes and to modify component properties.

”RxJS is a library for reactive programming using Observables, to make it easier to com-

pose asynchronous or callback-based code” (RxJS 2019). The listing 4.1 shows an ex-

ample of an Observable which is used in a component to keep track of the changes in the

Store. In this example, the app observes the location status to show the user if the active

exhibit is available, occupied, or offline.

Listing 4.1. Source code of a state observable.

1 th is . _unsubscribe = th is . appStore . subscr ibe (() =>

2 {

3 const s ta te = th is . appStore . ge tSta te () ;

4 th is . updateLocat ionStatus (s t a te . l o c a t i o n S t a t u s) ;

5 i f (s t a t e . c l o s e s t E x h i b i t)

6https://github.com/ngx-translate/core
7https://redux.js.org

36

4 Proof of Concept

6 {

7 th is . updateJo inBut tonStatus (s t a te . c l o s e s t E x h i b i t) ;

8 }

9 th is . l oca t ionSocke tS ta tus = s ta te . loca t ionSocke tS ta tus ;

10 }) ;

To access the hardware, the app uses business services. In more detail it uses the

NativeCommunicationService class. Listing 4.2 shows the communication implemen-

tation for iOS. For iOS, it is quite simple because the app just sends a JSON object which

contains the message name and the data which should be sent to the native part.

Listing 4.2. Source code of the communication with the iOS native part.

1 const message =

2 {

3 ’name ’ : messageName ,

4 ’ data ’ : messageBody

5 } ;

6

7 th is . winRef . nativeWindow . webki t . messageHandlers .

8 observe . postMessage (message) ;

The Android implementation is slightly different because it does not use one postMessage

method. Instead Android calls specific methods which are defined in the native Android

part like one can see in figure 4.3

Listing 4.3. Source code of the communication with the Android native part.

1 th is . winRef . nativeWindow . MEETeUXAndroidAppRoot . ge tDev ice In fos () ;

To receive the response of the native part, the app uses the native window. For this pur-

pose, we add a function to the window which can be called from the native part. For

example to receive the response for the ”getDeviceInfos” request we define the method of

listing 4.4.

Listing 4.4. Source code of the ”index.html” file to receive the device information.

1 window . send_device_infos = f u n c t i o n (dev i ce in fos)

2 {

3 window . angularComponentRef .

4 componentFn (" send_device_infos " , dev i ce in fos) ;

5 } ;

37

4 Proof of Concept

The function in the ”index.html” file redirects the function to Angular (see listing 4.5) where

the app calls the callFromOutside function. As parameters this function receives the

message name and the data.

Listing 4.5. Source code of the ”app.module.ts” file to receive messages from the native

part.

1 winRef . nativeWindow . angularComponentRef = {

2 zone : th is . zone ,

3 componentFn : (message , value) =>

4 th is . ca l lFromOuts ide (message , value) ,

5 component : th is

6 } ;

Based on the message name which is processed in a switch construct the app then calls a

method in the NativeResponseService which handles the data and updating the Store.

An example of the device information can be found in listing 4.6.

Listing 4.6. Source code for the ”send_device_infos” case.

1 case ’ send_device_infos ’ :

2 {

3 th is . nat iveResponseService . odRegister (value) ;

4 break ;

5 }

If needed, the business services use the socket service to send an event to the server.

Listing 4.6 shows that the odRegister() method of the NativeResponseService was

called. This method uses the socket service to register a new user. The Angular project

uses the ”ngx-socket-io8” library to establish a socket connection with the server and the

active exhibits. The library also allows the app to have multiple socket connections at the

same time.

Listing 4.7 shows the register method of the socket service. As one can see, the method

consists of two main parts. First, the socket connection is used to emit an event to the

server. Next, the app registers an event listener to receive the response. For most events,

the app only registers an event listener when it emitted an event to the server itself and is

waiting for a response.

Listing 4.7. Source code of the ”registerOD” method in the socket layer.

1 public registerOD (data : any) : any

2 {

3 th is . socket . emit (’ registerOD ’ , data) ;

8https://www.npmjs.com/package/ngx-socket-io

38

4 Proof of Concept

4

5 th is . socket . on (’ reg is terODResul t ’ , r e s u l t =>

6 {

7 const res = r e s u l t . data ;

8 const message = r e s u l t . message ;

9

10 i f (message . code > 299)

11 {

12 th is . s to re . d ispatch (th is . s ta tusAc t i ons .

13 changeErrorMessage (message)) ;

14 return ;

15 }

16

17 th is . s to re . d ispatch (th is . userAct ions .

18 changeUser (res . user)) ;

19 th is . s to re . d ispatch (th is . userAct ions .

20 changeLookupTable (res . l o c a t i o n s)) ;

21 th is . s to re . d ispatch (th is . userAct ions .

22 changeToken (res . token)) ;

23 th is . s to re . d ispatch (th is . s ta tusAc t i ons .

24 changeLoggedIn (true)) ;

25

26 th is . l o ca t i onSe rv i ce . se tToSta r tPo in t () ;

27

28 th is . r o u t e r . nav igate ([’ / mainview ’]) . then (() => { . . . }) ;

29

30 th is . socket . removeAl lL is teners (’ reg is terODResul t ’) ;

31 }) ;

32 }

As described in section 4.4.3, the result of the server always contains a data and a passage

part. If an error occurs at the server, the data part is NULL , and the message code is bigger

than 299. Therefore, the app dispatches an error if the code is bigger than 299 and exits

the method. If the request was a success, the received data is used to update the Store

by dispatching various actions. Like figure 4.7 shows sometimes the app uses the Angular

router to navigate to another view of the app. Finally, all socket service methods remove

the registered event listeners. This is required because the app would otherwise receive

the response twice at the next request of the same event, which would cause a problem.

39

4 Proof of Concept

4.4 The Server - GoD

In this section, the server will be described in more detail. The first subsection focuses on

the programmed software part of GoD. Secondly, the used operating system and server

configuration will be described in more detail. Also, continuous deployment and monitoring

tools will be described in this section. The last section will focus on the hardware we used

for the Klosterneuburg server.

4.4.1 GoD

GoD was programmed with Node.js9 which is a JavaScript runtime and an open-source

server environment. The default programming language is JavaScript, but you can ex-

tend a Node.js project with Typescript. So what is Typescript? TypeScript is a superset of

the JavaScript programming language and was developed by Microsoft based on the EC-

MAScript 6 (ES6) standard of JavaScript. TypeScript language constructs such as classes,

inheritance, modules, anonymous functions, and generics were also adopted in ES6. The

problem is that ES6 is not runnable on all devices or browsers. Therefore, applications can

be developed in Typescript and then compiled to ECMA Script 3 (ES3) or to ECMA Script

5 (ES5). Each JavaScript code is also valid TypeScript code, so that common JavaScript

libraries (such as jQuery or AngularJS) can also be used in TypeScript.

Typescript enables IDEs to provide a richer environment for finding common errors while

programming software. So, for larger JavaScript projects, adopting TypeScript might result

in more robust software, while still being deployable where a regular JavaScript application

would run. Important is that the language constructs of TypeScript only exist until compila-

tion and not at runtime. The reason is that the TypeScript code is compiled to ES3 or ES5

code which do not know about constructs like classes or types.

Due to the growing awareness of Node.js, there are now a large number of modules with

which servers can be developed a lot quicker and easier. The following list shows the most

important modules of the Node.js server:

Express Express is a simple and flexible Node.js framework that provides many powerful

features and capabilities for web applications and mobile applications. With count-

less HTTP utility methods and middleware features, creating a powerful API is quick

and easy (StrongLoop 2019).

Sequelize Sequelize is a promise-based Object Relation Mapping (ORM) for Node.js.

ORM is a process of mapping between objects and relational databases. An ORM

acts like an interface between two systems and therefore, provide advantages for

9https://nodejs.org/en/

40

4 Proof of Concept

developers like saving time and effort and rather focusing on business logic. ORM

helps in managing queries for multiple tables in an effective manner. Lastly, an ORM

is capable of connecting with different databases. Sequelize supports the dialects

PostgreSQL, MySQL, MariaDB, SQLite and MSSQL (Depold 2019).

Socket.io ”Socket.IO is a library that enables real-time, bidirectional and event-based

communication between the browser and the server. It consists of a Node.js server

and a JavaScript client library” (Socket.IO 2019). It offers many different features

like auto-reconnect, disconnection detection for both server and client, multiplexing,

or rooms, which allows sending specific messages only to a group of clients. But

Socket.IO is not an ordinary WebSocket implementation because it adds additional

metadata to the socket. Furthermore, Socket.IO is using WebSockets if possible, but

if the client is not supporting WebSockets, the server switches to long polling.

JWT To authenticate users to the server, GoD uses JSON Web Tokens. ”JSON Web To-

kens are an open, industry-standard RFC 7519 method for representing claims se-

curely between two parties” (auth0 2019). The module allows the server to decode,

verify, and generate JWTs.

dotenv ”Dotenv is a zero-dependency module that loads environment variables from a

.env file into process.env.” (Beatty 2019). The file must be stored in the root directory

of the project, and the content consists of a key, value pairs.

winston God uses Winston as a simple and universal logging library with support for mul-

tiple transports. A transport could be the console, a log file, or a database. Each

Winston logger can have multiple transports configured at different levels, e.g., error,

debug, information (Robbins 2019).

Nodemon Nodemon is a development server that will monitor for any changes in your

source code and automatically restarts the server.

Mocha GoD uses mocha to test the Socket.io interface. ”Mocha is a feature-rich JavaScript

test framework running on Node.js and in the browser, making asynchronous testing

simple and fun. Mocha tests run serially, allowing for flexible and accurate reporting

while mapping uncaught exceptions to the correct test cases” (mochajs.org 2019).

Chai Chai is a behavior-driven development (BDD) / test-driven development (TTD) as-

sertion library for node and the browser that can be delightfully paired with any

JavaScript testing framework (chaijs.com 2019). God uses chai in combination with

mocha for testing.

41

4 Proof of Concept

4.4.2 Environment Variables

Of course the server needs config to e.g. access the database or to know where the log

files are stored. The config of a server is everything that is likely to vary between deploys

(production, developer environments, etc). These configuration variables should not be

stored in the code as constants. That would be a violation of the ’Twelve-Factor App’ rules

of Wiggins (2019). He proposes that config should always be strictly separated from the

code. Instead the config should be stored in environment variables. As mentioned before

GoD uses the Node.js module Dotenv to load environment variables from a .env file into

process.env. Since the .env file contains specific server configuration the file will not be

added to the repository. Instead the repository includes a dotenv_example file which can

be renamed to .env and filled out. The listing 4.8 shows the content of the dotenv_example

file.

Listing 4.8. The content of the dotenv_example file.

1 NODE_PATH =

2 SERVER_PORT =

3 CERT_PATH =

4 KEY_PATH =

5 CA_PATH =

6 SECRET =

7 HTTPS = 0/1

8

9 # Database

10 DB_USER =

11 DB_PASSWORD =

12 DB_NAME =

13 GENERATE_DATA = true / fa lse

14

15 # Logging

16 ERROR_LOGGER_FILE =

17 COMBINED_LOGGER_FILE =

18 LOGGER_LEVEL =

In the following list all variables which are necessary for GoD will be briefly described:

NODE_PATH The path should lead to the root directory of the project. GoD includes an

asset HTML file which can be used to test the socket interface without the need of

the app. The path is necessary to load the file when entering the server address in

the browser.

42

4 Proof of Concept

SERVER_PORT This variable determines the port on which the server should be run-

ning. It should be considered that superuser privileges are needed when running the

server on a critical port like 80 (HTTP) or 443 (HTTPS).

CERT_PATH This variable represents the file path to the SSL certificate for the Node.js

server (this file is needed to start the HTTPS server).

KEY_PATH The file path to the private key for SSL certificate which was specified in

”CERT_PATH”.

CA_PATH The file path to the certificate of the certificate authority which signed the server

certificate. This file is needed in to verify the authenticity of the certificate.

SECRET The secret is used to encode, decode, and verify the JSON Web Tokens (JWT).

Default JWT is using the H256 (HMAC with SHA-256) algorithm. Therefore, the

secret should be 256-bit long.

HTTPS This variable indicates if the server should be running as a normal HTTP server or

as a more secure HTTPS server. It is recommended to use an HTTPS server when

running the server in production. Nevertheless, it is not necessary to do so if one is

developing locally. If the variable has the value 1, the server will start as an HTTPS

server.

DB_USER The database user is required for Sequelize to access the database. There-

fore, the specified username must be created in the desired database, and it needs

full access to this database.

DB_PASSWORD The password of the specified database user must be entered here.

DB_NAME The database name which Sequelize should use for the server.

GENERATE_DATA If the value is set to true, the server will always delete all database

tables and data and then recreate them. The server will also add example data to

the database like locations, content, or an example user.

ERROR_LOGGER_FILE Like mentioned before GoD is using the tool Winston as a log-

ger. This variable, therefore, contains the file path to the file in which the errors are

logged/stored (it must be a path to a file, e.g. ”/srv/logging/error.log”).

COMBINED_LOGGER_FILE All log events except the errors are stored in this file. Like

the ”ERROR_LOGGER_FILE” the path must be a file-like ”/srv/logging/combined-

Logs.log”.

LOGGER_LEVEL Winston supports eight different logging levels10. The logging level in-

10https://www.npmjs.com/package/winston#logging-levels

43

4 Proof of Concept

dicates what kind of messages will be logged in the application. Each level has a

dedicated integer level, e.g., errors have the value of 3. The variable should contain

the integer value of the logging level you want the application to have. For example,

one could use the value six, which includes all messages up to the info messages.

4.4.3 Server Structure

As already mentioned, GoD offers the app a Socket.io application programming interface

(API), which is event-based. This means that once a client is connected to the server,

various event listeners are registered for the new socket connection. The app can now

send an event to the server to receive data or trigger an action. With each the event, the

app can send a payload to the server in the Javascript Object Notation (JSON) format. As

one can see in figure 4.10 the Socket.io interface is added to the Express server in order

to be available for the clients. When the server receives an event, a method of a controller

in the business layer is called. The controller is processing the received data, accessing

the database, and returning the result to the socket layer. The socket layer is then sending

back the result to the client.

Figure 4.10. Schematic structure of the server/GoD.

The result always has the JSON format and always contains a data and a message part.

Listing 4.9 shows an example of a user registration. If everything was successful at the

server, the data section would always contain some kind of data. The message section

always contains a code, a date, and a string message. When everything was successful,

the message code will be between 200 and 299. Everything above will indicate that an

error occurred. If an error occurred, the data section would also be NULL .

In order to access the database more quickly and so that that SQL commands do not

44

4 Proof of Concept

have to be written directly, GoD uses Sequelize. For this purpose, a Sequelize object was

created for each table in the database, and the respective table associations were defined.

The business layer controllers are using these objects to interact with the database.

The logger can be accessed from each layer in order to log errors or other information for

each layer.

Listing 4.9. The result of a guest user registration.

1 {

2 data : {

3 l o c a t i o n s : (37) [. . .] ,

4 token : " eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9 . . . " ,

5 user :

6 {

7 answeredQuestionnaire : false ,

8 appVersion : " 1 .0 .0 " ,

9 contentLanguageId : 1 ,

10 createdAt : "2019−07−29T13 :07:42.479Z" ,

11 deviceAddress : " deviceAddress " ,

12 deviceModel : " deviceModel " ,

13 deviceOS : " deviceOS " ,

14 deviceVers ion : " deviceVers ion " ,

15 i d : " c876fd42−54ae−497b−9f6e−9e9cf0641297 " ,

16 ipAddress : " not set " ,

17 isDe le ted : false ,

18 isGuest : true ,

19 name : " Guest5 " ,

20 pr imaryColor : 1 ,

21 secondaryColor : 1 ,

22 socket Id : " Lvx07Vsop6UOrmidAAAy " ,

23 updatedAt : "2019−07−29T13 :07:42.479Z"

24 }

25 } ,

26 message : {

27 code : 201 ,

28 date : "2019−07−29T13 :07:42.796Z" ,

29 message : " User created su ccess fu l l y "

30 }

31 }

45

4 Proof of Concept

4.4.4 Socket Layer

The code to create an HTTP or HTTPS server with Express is pretty simple. The source

code in the listing 4.10 shows all the code needed to create an HTTP or HTTPS server

with express. Basically, we just have to create a new instance of Express. After that, we

are using the standard https or http module of Node.js to create a server. If we want to

create an https server, the program must first load the SSL credentials and pass them

to the createServer method. After that, we create a new instance of the WebSocket

class and add it to the server. Finally, the application connects to the database (see list-

ing 4.10:15). When the application successfully connected, the server starts listening on

the port specified in the environment variable.

Listing 4.10. Source code of the server creation

1 th is . app = new Express () ;

2

3 const runAsHttps : number = parse In t (process . env . h t t ps) ;

4 i f (runAsHttps)

5 {

6 const cred = th is . l oadCreden t ia l s () ;

7 th is . server = h t t ps . createServer (cred , th is . app) ;

8 }

9 else {

10 th is . server = h t t p . createServer (th is . app) ;

11 }

12

13 th is . socket = new WebSocket (th is . server) ;

14

15 th is . socket . connectDatabase () . then (() =>

16 {

17 th is . server . l i s t e n (process . env .SERVER_PORT, () => {

18 th is . _ logger . i n f o (’ Server runs on Por t ’ +

19 process . env .SERVER_PORT) ;

20 }) ;

21

22 }) ;

To add the socket layer to the express server, we just create a new instance of Socket.io’s

IO class and pass the express server as a parameter this.io = new IO(server) . Now

we can add an event listener to the new created instance which is listening for new connec-

tions: this.io.on(’connection’, (socket) => {...}); . If a new client connects to

46

4 Proof of Concept

the server, the callback method will be called, and as a parameter, the new socket connec-

tion is passed to this method. This parameter represents the socket connection between

the client and the server and can now be used to send events. On the server-side, the

application adds all the necessary listeners to the new socket connection.

Listing 4.11 shows an example of a socket event listener. In the example, the listener is

registered for the event ”registerODGuest” and passes the received data as a parameter

to the callback method. Next, the application calls a method of a business layer controller.

In this case it calls the registerGuest method of the odController . In order for the

server to continue processing events, all business controller methods are asynchronous.

Therefore, they are returning a promise11 object. If the promise is resolved the result of

the controller is passed to a callback method (see listing 4.11:3). In the case of the ”regis-

terODGuest” functionality, the controller returns the newly generated user and all location

information of the exhibition.

But before the server sends back the result to the client, a token will be generated with the

JWT module. The token will embed the created user and is encrypted by the environment

variable called ”SECRET”. In the next step, we add the token to the socket connection.

The token is added to the connection so that we can now authenticate all events where

necessary.

Listing 4.11. Socket event to register a new guest user at the server.

1 socket . on (’ registerODGuest ’ , (data) => {

2 th is . odCon t ro l l e r . reg is te rGues t (data , socket . i d)

3 . then ((r e s u l t) => {

4 i f (r e s u l t . data && r e s u l t . data . user)

5 {

6 const user = r e s u l t . data . user ;

7 const l o c a t i o n s = r e s u l t . data . l o c a t i o n s ;

8

9 / / Generate token

10 const token = j w t . s ign ({ user } , process . env .SECRET) ;

11

12 / / Add token to r e s u l t and to the socket connect ion

13 r e s u l t . data = { token , user , l o c a t i o n s } ;

14 socket . token = token ;

15 }

16

17 socket . emit (’ registerODGuestResul t ’ , r e s u l t) ;

18 }) ;

19 }) ;

11https://developer.mozilla.org/de/docs/Web/JavaScript/Reference/Global_Objects/Promise

47

4 Proof of Concept

Not all socket events should be available to the client without a valid authentication token.

Therefore, a middleware was added to the Socket.io layer as one can see in listing 4.12.

In the first two lines of the middleware, we can first get the newly sent event from the

packet variable and, secondly, access the token from the socket connection. The token

was previously added to the socket connection when the client registers as a new user or

when it logged in. The first check in the method checkEventsTokenNeeded now validates

if the sent event needs a token or not. The following list shows which socket events do not

need a token:

• ’registerOD’

• ’autoLoginOD’

• ’loginOD’

• ’disconnectUsers’

• ’registerODGuest’

• ’exhibitDisconnectedFromExhibit’

• ’checkUsernameExists’

• ’checkEmailExists’

• ’checkNameOrEmailExists’

• ’loginExhibit’

• ’updateSeat’

• ’addTokenToSocket’

• ’unlockCoaPartFromExhibit’

• ’getWifiSSID’

If the event needs an authentication token, the application now verifies if the token is valid.

If so we can access the user object of the decoded token. If the user object exists, the

server can check if the user is a guest user or not. If the user object is a guest user,

the method checkGuestAccess validates if guest users have access to this event. This

means that guest users may not have access to all socket events. This method evaluates

whether the event should be accessible to guest users or not.

If everything is fine the middleware returns the next() method. If an error occurred,

the application returns the next(new Error(’...’) method and passes an error to the

method as a parameter.

48

4 Proof of Concept

Listing 4.12. Authentication middleware for the socket connections.

1 socket . use ((packet , next) => {

2 const event : S t r i n g = packet [0] ;

3 const token = socket . token ;

4

5 i f (th is . checkEventsTokenNeeded (event))

6 {

7 j w t . v e r i f y (token , process . env .SECRET, (er r , decoded) => {

8 i f (e r r) {

9 th is . _ logger . e r r o r (’JWT Er ro r − Event : ’ +

10 event + ’ E r ro r : ’ + e r r) ;

11 return next (new Er ro r (’ I n v a l i d token Er ro r ’)) ;

12 }

13

14 const user = decoded . user ;

15

16 i f (user) {

17 i f (user . isGuest) {

18 i f (th is . checkGuestAccess (event)) {

19 return next () ;

20 }

21 else {

22 th is . _ logger . e r r o r (’ . . . ’) ;

23 return next (new Er ro r (’ . . . ’)) ;

24 }

25 }

26 else {

27 return next () ;

28 }

29 }

30

31 return next () ;

32 }) ;

33 }

34 else {

35 return next () ;

36 }

37 }) ;

Until now, we always talked about direct socket connections between a client and the

49

4 Proof of Concept

server. With the socket variable we get when a new connection is established, the server

and client can send events to each other. But besides the direct connection, both the client

and the server can also send an event to all connections. Here we speak of a broadcast

that can look like this: socket.broadcast.emit(’some socket event’) . This event

will be received by all participants, which is quite useful when we want to announce some-

thing globally.

Finally, the application needs another way to send direct messages to specific devices.

An example could be that a visitor is not directly connected to an active exhibit, but the

communication is via the server. Why should we want to do that after having previously

mentioned that a direct connection allows for faster communication? The reason is that the

application might just need some data from the client just at the beginning and at the end

of the communication. The application then works without any further data from the client.

An additional connection to the active exhibit would be superfluous. So that the data can

now be sent to the exhibit, the server must be able to forward the data. This can be done

when the server knows the socket id of the connection between the server and the active

exhibit. Every socket connection has a universally unique identifier (UUID) with which the

connection can be identified. We can use this UUID to send an event directly to this client.

In order to do so, the application is storing all socket ids in the database. To send an event

to a client, the application is not using the socket variable. Instead, we use the instance of

the Socket.io class IO which we created in the constructor of the Websocket class of the

server. The application can use the to method of the IO class to emit the event to the

designated client: this.io.to(socketId).emit(’some socket event’) .

4.4.5 Business Controller

Like mentioned before the business controller is processing the data received by the sock-

ets, accessing the database via the Sequelize objects and then prepare and return the

result to the socket layer. GoD uses five different controllers, and each has its own specific

purpose:

ConfigController This controller accesses the settings table of the database and com-

pares if the app has the correct version number and if the WIFI with which the OD is

connected is correct.

ExhibitController The purpose of this controller is only responsible for login and shutdown

the active exhibits.

LocationController This controller is responsible for everything which is related to the ex-

hibition’s locations. For example, there is a method called registerTimelineUpdate ,

which is always called when the app on the OD receives a new beacon. Or the

method checkLocationStatus which is used to check if an active exhibit is free,

50

4 Proof of Concept

occupied or even offline. The LocationController is the only one who needs a refer-

ence to the IO class of Socket.io in order to redirect messages for the exhibits or

clients.

ODController The ODController offers methods which are related to the users. For exam-

ple the controller contains the method registerOD or registerGuest which are

used to create a new user or new guest user. It also contains the methods to log in

users or to check if a username is already taken.

CoaController The code of arms is part of the app and is described in more detail in

section 4.3. But basically, it offers the user the option to built their own code of

arms. Therefore the user unlocks different parts while exploring the exhibition. The

CoaController contains all methods to unlock the different parts or to change the

selected items or color.

All the controllers are initialized in the constructor of the Websocket class as one can see

in listing 4.13. Furthermore, all methods are asynchronous and return a promise. A listing

of all controller methods and their corresponding purposes can be found in the wiki12 of the

GoD repository.

Listing 4.13. The constructor of the Websocket class.

1 cons t ruc to r (server : any)

2 {

3 th is . i o = new IO (server) ;

4 th is . odCon t ro l l e r = new OdCont ro l le r () ;

5 th is . l o c a t i o n C o n t r o l l e r = new L o c a t i o n C o n t r o l l e r (th is . i o) ;

6 th is . e x h i b i t C o n t r o l l e r = new E x h i b i t C o n t r o l l e r () ;

7 th is . c o n f i g C o n t r o l l e r = new C o n f i g Co n t ro l l e r () ;

8 th is . coaCon t ro l l e r = new CoaCont ro l le r () ;

9 th is . database = Connection . ge t Ins tance () ;

10

11 th is . _ logger = Logger . ge t Ins tance () ;

12

13 th is . a t t achL i s t ene rs () ;

14 }

12https://github.com/MaximilianFHSTP/max-god/wiki

51

4 Proof of Concept

4.4.6 Database / Sequelize Layer

Most of the database logic is programmed in the Connection class. This class uses the

Singleton design pattern, which means that all controllers are always using the same in-

stance of this class. The first step to use Sequelize as an ORM mapper is to create a new

instance of the Sequelize class. Listing 4.14 displays all the different parameters of the

Sequelize constructor. Most of them are straightforward, but it is important to mention that

in order to have correct timestamps at the server, the application must set the timezone

option in the Sequelize constructor. By default, it is using the UTC timezone UTC±0.

The logging option indicates if Sequelize should log all executed SQL statements which

are executed by the server. This can be pretty useful if one is debugging the server func-

tionality, but it would generate a lot of log entries if it is used in production.

Listing 4.14. The constructor of the Sequelize class.

1 th is . _sequel ize = new Sequel ize (process . env .DB_NAME,

2 process . env .DB_USER, process . env .DB_PASSWORD,

3 {

4 host : ’ l o c a l h o s t ’ ,

5 d i a l e c t : ’ mysql ’ ,

6 logg ing : false ,

7 timezone : ’ +02:00 ’

8 }) ;

The three most important methods of the Connection class are syncDatabase , initDatabaseTables

and initDatabaseRelations . The syncDatabase method is responsible to actually

connect with the database. When a new instance of the Sequelize class is created, we

pass all needed parameters to the class, but it does not automatically connect with the

database. In order to do so the application has to call the sync() method as one can see

in listing 4.15:18.

Listing 4.15. Sync method of the Conenction class.

1 public async syncDatabase ()

2 {

3 const dataFactory = new DataFactory () ;

4 dataFactory . connect ion = th is ;

5

6 th is . _ logger . i n f o (’ Syncing to database ! ’) ;

7

8 i f (process . env .GENERATE_DATA === ’ t r ue ’)

9 {

10 awai t th is . _sequel ize . sync ({ fo rce : true }) ;

52

4 Proof of Concept

11 th is . _ logger . i n f o (’ Creat ing data ! ’) ;

12 awai t dataFactory . createData () . catch (e r r => {

13 th is . _ logger . e r r o r (e r r) ;

14 th is . _ logger . e r r o r (" Could not create data ! ") ;

15 }) ;

16 }

17 else

18 awai t th is . _sequel ize . sync () ;

19

20 awai t th is . _ se t t i ng s . f indByPk (1) . then (r e s u l t =>

21 th is . _cu r ren tSe t t i ngs = r e s u l t) ;

22 }

If the process variable ”GENERATE_DATA” is set to true the sync() method is called

with the option sync(force: true) . If the force option is set to true Sequelize deletes

all data and all tables in the defined database. After that it is regenerating the tables and

adding the data which is defined in the createdData() method of the dataFactory

class. Of course, this also means that you have to work with caution because setting the

wrong value for this environment variable means that all collected data would be lost.

In the initDatabaseTables method, Sequelize defines all database tables and their cor-

responding attributes. Listing 4.16 shows the definition of the user table. As one can see,

the definition has a JSON format. Each element represents an attribute of the database

table, and all can be configured as you like. For example, the id is defined as the primary

key and as UUID. Or the name is defined as a string, it cannot be null, and it must be a

unique value. As type Sequelize always uses its own types which are then mapped to the

corresponding database types. E.g. Sequelize has a boolean data type which represents

as TINYINT(1) in the database.

Listing 4.16. Definition of the user table with Sequelize.

1 th is . _user = th is . _sequel ize . de f ine (’ user ’ ,

2 {

3 i d : {

4 primaryKey : true ,

5 type : Sequel ize . UUID ,

6 de fau l tVa lue : Sequel ize . UUIDV4 ,

7 } ,

8 name : {

9 type : Sequel ize .STRING,

10 a l l o w N u l l : false ,

11 unique : true

53

4 Proof of Concept

12 } ,

13 password : {

14 type : Sequel ize .STRING,

15 a l l o w N u l l : true

16 } ,

17 emai l : {

18 type : Sequel ize .STRING,

19 unique : fa lse

20 } ,

21 .

22 .

23 .

24 isDe le ted : {

25 type : Sequel ize .BOOLEAN,

26 de fau l tVa lue : false ,

27 a l l o w N u l l : fa lse

28 }

29 }) ;

All tables are defined like this and then stored in a variable to be accessible in the controller

classes. The next step is to define the relations of the database tables. This is done in the

initDatabaseRelations method. Listing 4.17 shows a 1:n relationship of the tables

users and locations to store the user’s current position. The definition of the relation can

also be used to define the foreign key, e.g., currentLocation .

Listing 4.17. Definition of the table relationship between the users and locations tables.

1 l o c a t i o n . hasMany (th is . user , { fore ignKey : ’ cu r ren tLoca t i on ’ }) ;

2 user . belongsTo (th is . l oca t i on , { fore ignKey : ’ cu r ren tLoca t i on ’ }) ;

Now everything is finally defined, and the table variables can be used in the controllers to

access the data. Listing 4.18 shows an example of a guest user creation. The method

registerGuest is part of the OdController and in this method, the defined Sequelize

user table is used to create a new user. The attributes are passed as a JSON object, and

the names must exactly match the definition of the table. For further information about the

usage of Sequelize, one should visit their website ”https://sequelize.org/master/”.

Listing 4.18. Creation of a guest user.

1 th is . _database . user . c reate ({

2 name : i d e n t i f i e r ,

3 deviceAddress : deviceAddress ,

4 deviceOS : deviceOS ,

54

4 Proof of Concept

5 deviceVers ion : deviceVersion ,

6 deviceModel : deviceModel ,

7 ipAddress : ’ not set ’ ,

8 contentLanguageId : language ,

9 socket Id

10 }) ;

4.4.7 Messages

Like mentioned before all results include a message which allows the client to quickly

check if the received result was successful or if an error occurred. Listing 4.19 shows the

Message class which is constructed very simple. The class only contains three variables,

namely code, message, and date. The code and the message are passed as parameters

when initializing a new object of the Message class. The date, on the other hand, is

automatically generated in the constructor and therefore, always contains the current date

and time when the message was generated.

Listing 4.19. Definition of the Message class.

1 export class Message

2 {

3 private code : Number ;

4 private message : S t r i n g ;

5 private date : Date ;

6

7 cons t ruc to r (code , message)

8 {

9 th is . code = code ;

10 th is . message = message ;

11 th is . date = new Date () ;

12 }

13 }

The message codes have been globally defined, so they only have to be changed at one

point in the code. In total, there are six different types of codes. Each type has a different

hundred area for its codes. For example, all success codes have a code between 200 and

299. The following table lists all types and code ranges for the messages.

55

4 Proof of Concept

Table 4.1. All message types and their corresponding code ranges.
Types Code range
Success 200 - 299
Location 300 - 399
OD 400 - 499
Authentication 500 - 599
Code of Arms 600 - 699

4.4.8 Logging

As mentioned before GoD is using Winston to log information. Like the Connection class,

the logger class is designed as a singleton. The logger level and the intended files are

loaded from the environment variables. In the next step, a new Winston logger is created

as one can see in figure 4.20:7. The desired format is JSON, and as default transports, two

files are defined. File one includes all errors, and file two will include all other log events.

If the server is not started in production mode, Winston also loggs to the console. This is

quite useful while one debugs the server.

Listing 4.20. Definition of the Logger class.

1 private cons t ruc to r ()

2 {

3 const l e v e l = process . env .LOGGER_LEVEL;

4 const e r r o r F i l e = process . env .ERROR_LOGGER_FILE;

5 const combinedFi le = process . env .COMBINED_LOGGER_FILE;

6

7 th is . _ logger = Winston . createLogger ({

8 l e v e l : l eve l ,

9 format : Winston . format . json () ,

10 t r a n s p o r t s :

11 [

12 new Winston . t r a n s p o r t s . F i l e ({

13 f i lename : e r r o r F i l e ,

14 l e v e l : ’ e r r o r ’

15 }) ,

16 new Winston . t r a n s p o r t s . F i l e ({

17 f i lename : combinedFi le

18 })

19]

20 }) ;

21

56

4 Proof of Concept

22 i f (process . env .NODE_ENV !== ’ p roduc t ion ’) {

23 console . log (’ Winston − Enabled Console logg ing ! ’) ;

24 th is . _ logger . add (new Winston . t r a n s p o r t s . Console ({

25 format : Winston . format . s imple ()

26 })) ;

27 }

28 }

4.4.9 Unit Testing

So that the functionality of the server can be guaranteed even after a change, unit tests

have been defined for the server. Therefore, the Node.JS server uses the test framework

Mocha.js, which makes asynchronous testing simple. ”Mocha tests run serially, allowing

for flexible and accurate reporting while mapping uncaught exceptions to the correct test

cases” (mochajs.org 2019). Additionally, the server uses Chai as an assertion library.

Chai is a behavior-driven development (BDD) / test-driven development (TTD) assertion

library for node and the browser that can be delightfully paired with any JavaScript testing

framework (chaijs.com 2019). God uses chai in combination with mocha for the unit tests.

An assertion library is used to verify if data is correct. This simplifies the tests so that the

code does not have to contain a lot of if statements.

Listing 4.21 shows the configuration for the unit tests. Before the unit tests can be started,

a socket connection to the server must first be established. For this purpose, the before

method of Mocha can be used. This method is always called before the unit tests are

executed. After the tests, the connection should be terminated again. This is done in the

after method.

Listing 4.21. Configuration for the unit tests for the server.

1 descr ibe (’ User socket events ’ , f u n c t i o n ()

2 {

3 var socket ;

4

5 before (’ e s t a b l i s h socket connect ion . . . ’ , f u n c t i o n (done)

6 {

7 i f (process . env . h t t ps === ’ 1 ’)

8 socket = i o . connect (’ h t t ps : / / l o c a l h o s t : ’ +

9 process . env .SERVER_PORT) ;

10

11 else

12 socket = i o . connect (’ h t t p : / / l o c a l h o s t : ’ +

57

4 Proof of Concept

13 process . env .SERVER_PORT) ;

14

15 socket . on (’ connect ’ , f u n c t i o n ()

16 {

17 done () ;

18 }) ;

19 }) ;

20

21 a f t e r (’ c l os i ng socket connect ion . . . ’ , f u n c t i o n (done)

22 {

23 i f (socket . connected)

24 socket . d isconnect () ;

25

26 else

27 console . log (’ no connect ion to c lose . . . ’) ;

28

29 done () ;

30 }) ;

31

32 .

33 .

34 .

35 }) ;

For the actual tests, we are using the Chai assertion syntax as one can see in figure 4.22.

The tests are defined with the it() method of Mocha. In the method, the test is first

sending an event to the server as the app would do. Then an event listener is regis-

tered to receive the result of the event. The result is then tested with Chai’s expect()

method to determine if everything was successful. For example, the ”registerAsGuest”

event should return the status code 201. To test this, the Chai syntax looks like this:

expect(message.code).to.be.equal(201);

Listing 4.22. Unit test for the ”registerAsGuest” event.

1 i t (’ reg is terAsGuest ’ , f u n c t i o n (done)

2 {

3 socket . emit (’ registerODGuest ’ ,

4 {

5 deviceAddress : ’ deviceAddress ’ ,

6 deviceOS : ’ deviceOS ’ ,

7 deviceVers ion : ’ dev iceVers ion ’ ,

58

4 Proof of Concept

8 deviceModel : ’ deviceModel ’ ,

9 language : 1

10 }) ;

11

12 socket . on (’ registerODGuestResul t ’ , f u n c t i o n (r e s u l t)

13 {

14 const message = r e s u l t . message ;

15 const data = r e s u l t . data ;

16

17 token = data . token ;

18 user = data . user ;

19 const l o c a t i o n s = data . l o c a t i o n s ;

20

21 expect (message . code) . to . be . equal (2 0 1) ;

22 expect (token) . to . e x i s t ;

23 expect (user) . to . e x i s t ;

24 expect (l o c a t i o n s) . to . e x i s t . and . to . have . lengthOf (3 7) ;

25

26 socket . removeAl lL is teners (’ registerODGuestResul t ’) ;

27 done () ;

28 }) ;

29 }) ;

4.4.10 Server Management

The previous sections described the programmed application for the server. This chapter

now covers the used operating system (OS) on which the server is deployed. Furthermore,

the used server management tools are described in more detail.

Node.js runs on multiple platforms, but after the hardware for the server are specific server

components, the possible operating systems are also limited. For the exhibition of Klosterneuburg,

we therefore use the server image of the Ubuntu OS with the version 16.04 LTS13. Ubuntu

is one of the most popular operating systems across public clouds and OpenStack clouds.

Ubuntu is a Linux distribution and is an easily manageable operating system.

In order to run our Node.JS application on the Ubuntu Server one has to install Node.js on

the server. This can be easily done with the command pkg install node . Of course,

the corresponding user must have root access in order to install a new package. Another

13http://releases.ubuntu.com/16.04/

59

4 Proof of Concept

option is the usage of the Node Version Manager (NVM). NVM is a bash script used to

manage multiple versions of Node.JS. It allows you to install, uninstall, and switch differ-

ent node version for different projects. This can be quite useful since sometimes specific

Node.JS projects are not always using the newest version. NVM can be easily installed

using the curl tool.

The next step is the installation of your desired database. By default, the Node.JS appli-

cation uses an MYSQL database. The database can be easily installed with the command

sudo apt install mysql-server and then configured with the command

sudo mysql_secure_installation . For more details, one can visit the DigitalOcean

website14.

To manage the server one could use a process manager. For Node.js applications, a pos-

sible solution is the tool PM2. PM2 is an advanced Node.js process manager to manage

your applications states, so you can start, stop, monitor, restart, and delete processes.

PM2 can be installed with the Node Package Manager (NPM) which was already installed

with Node.js. The command npm install pm2@latest -g installs PM2 globally. Now

all prerequisite is fulfilled to run the Node.JS application on the Ubuntu server. Before

one can start the application with pm2, the node modules have to be installed. Therefore,

the command npm install must be executed in the project directory. After that, the

Typescript files have to be compiled to Javascript files with the command npm run tsc .

Furthermore, the ”dotenv_example” file must be renamed to ”.env” and filled out.

To start the application with pm2 run the command pm2 start dist/index.js . It is

important to mention that the application runns as the user who entered the command.

So if you start the application as root, the process is also running with root privileges.

However, running an application with root privileges also poses some security risks if the

application has security vulnerabilities. Therefore, it is better to start the application with

a user who does not have root privileges. Note that this user can not start the application

on the default reserved ports for HTTP (80) or HTTPS (433) because they require root

privileges. To solve this problem you can, for example, start the server on port 8080 and

then open it in the firewall. Of course, for the socket connection, the port must also be

specified in the app. Another possibility is to forward the traffic from port 80/443 to port

8080. This would make port 8080 inaccessible from the outside.

With the command pm2 list , one can see all started applications. Figure 4.11 shows an

example output of this command. As one can see, the command presents a lot of different

information like the PID of the OS, the uptime of the application, or how often the application

was already restarted. Furthermore, the command pm2 logs Max-GoD –lines 1000

shows you the log file of pm2 for the corresponding application. If an error occurred and

the app was restarted, one can find the error output in the PM2 log file.

14https://www.digitalocean.com/community/tutorials/so-installieren-sie-mysql-auf-ubuntu-18-04-de

60

4 Proof of Concept

Figure 4.11. Output of the ”pm2 list” command.

When the application is running, one can use the command pm2 startup to generate

a startup script for all running applications. By default, the applications are not surviving

a restart. Therefore, it would be necessary to manually restart the applications after the

server was restarted. In order to do this automatically, the pm2 startup command is

generating a script which is executed when the server is starting. The script restarts all

applications which were running when the startup script was generated.

If an error occurs, PM2 will automatically try to restart the application. However, the admin-

istrator receives no message until now if an error has occurred. Of course, this is not very

practical since the administrator currently has to check the status of the server indepen-

dently regularly. To solve this problem, PM2 offers two additional tools. The first tool is a

monitoring tool with the name ”pm2-server-monit”. This module automatically monitors the

vital signs of the applications like CPU average usage, Network speed (input and output),

Free and used memory space, and more.

Figure 4.12. Server monitoring example of a pm2 application.

The module can be easily installed by the command pm2 install pm2-server-monit

and does not need an additional configuration. Furthermore, PM2 offers a website to see

the monitoring output. Figure 4.12 visualizes the output of the server for the Klosterneuburg

exhibition. As you can see, the website displays all the parameters mentioned above in a

clear visualization and in real-time.

The second module is called ”pm2-health” and it can be used to, for example, monitor if

the application throws an error or if the application is restarted. After installing the module

with the command pm2 install pm2-health , it can be configured to send emails when

an error occurs, or another event such as an application reboot occurs. Therefore, the

administrator does not need to monitor the server independently.

61

4 Proof of Concept

4.4.11 Continuous Deployment

To automatically test the server functionality and then deploy the application at the server,

we are using the platform Codeship. Codeship uses fast, powerful Virtual Machines (VM)

with preinstalled technology stacks to make starting a Continuous Integration (CI) / Contin-

uous Deployment (CD) pipeline easy and fast. For the Klosterneuburg exhibition, Codeship

provides the possibility to automatically run the defined Unit Tests whenever we are push-

ing changes to specific branches of the repository. If the tests were successful, Codeship

is deploying the project at the designated server.

Codeship offers the user the possibility to run specific setup commands before the unit tests

are executed. Setup commands can be used to e.g., load dependencies or prepare the

database. For this project, we basically run the same commands which were already men-

tioned in section 4.4.10. Therefore, the node modules must be installed. The Typescript

code must be compiled to Javascript, and the environment variables must be configured.

By default, Codeship installs a MySQL database server in every VM and saves the user

credentials in environment variables. If the tests were successful, Codeship provides a lot

of different deployment options. For this case, the tool PM2 is used to deploy the project

at a server. The deployment configuration can be stored in a ”ecosystem.config.js” file.

Listing 4.23 shows the deployment code for the development server.

Listing 4.23. Deployment configuration for the PM2 tool.

1 develop : {

2 user : ’ node ’ ,

3 host : ’ god . meeteux . f hs tp . ac . a t ’ ,

4 r e f : ’ o r i g i n / develop ’ ,

5 repo : " h t t ps : / / g i thub . com/ MaximilianFHSTP / max−god . g i t " ,

6 path : ’ / s rv / develop ’ ,

7 ’ post−deploy ’ : ’ cp . . / . env . / && npm i n s t a l l && npm run tsc

8 && pm2 s t a r t O r R e s t a r t ecosystem . con f i g . j s −−env produc t ion ’ ,

9 ’ pre−deploy ’ : ’ g i t rese t −−hard ’

10 }

In the configuration, various options can be defined. PM2 connects to the configured

server using SSH and the configured user credentials. It clones the branch of the specified

repository to the configured path at the server. It also offers the administrator the possibility

to define pre- and post-deploy commands. Before the project is deployed, we want to

reset the repository at the server in the case some files changed. After the deployment

we copy the ”.env” file into the project folder, install the node modules and compile the

Typescript code to JavaScript. Finally, the application is started or restarted. We can use

this deployment option in our Codeship CD pipeline by installing PM2 in the VM and then

62

4 Proof of Concept

simply call the command pm2 deploy develop . The CD pipeline is always triggered

when a change is pushed to the ”develop” or ”master” branch.

4.5 Database

This section deals with the database design of the GoD database. Not every single attribute

of the database is explained, but instead, it’s more about the relationships between the

individual database tables.

Figure 4.13. Database design of the GoD server.

The two main tables are the Users and the Locations table. Like the name suggests

the Users table includes all relevant data of the exhibition users. The user can register

with a username, email, and password and additionally, the device information of the OD of

the visitor is stored in this table. Furthermore, if the user joins an active exhibit, the socket

id is stored. The Users table has a reference to the ContentLanguages table to define

the user’s default language for the app contents. Like mentioned before the user can un-

lock different parts of the Code of Arms. Therefore, there is an n:m connection between

the Users table and the CoaParts table. Each time the visitor unlocks a COA part a new

entry in the UserCoaParts is generated. The ”isActive” flag is used to determine which

COA parts are currently used in their code of arms. Each COA part has a specific type

63

4 Proof of Concept

which is defined in the CoaTypes table. The COA has a primary and a secondary color

which is stored in the Users table as the two references ”primaryColor” and ”secondary-

Color”. Each user can be part of a group, and therefore the table includes a ”groupId” to

identify the group which is stored in the Groups table.

The second most important table is the Locations Table. This table contains all locations of

the exhibition. The following listing lists some of the most important attributes of this table:

contentURL This attribute is used to determine which UI component should be loaded in

the app.

ipAddress Each exhibit needs a static IP address in order to be accessible for the app.

Furthermore, the exhibit uses the address to login at GoD. After the login, GoD

changes the status of the location from ”OFFLINE” to ”FREE”. It also resets the

”currentSeat” attribute to zero.

socketId After the exhibit has logged in to the server, the socket id is stored in the database

so that GoD can forward messages from the users to the exhibits.

currentSeat This value is used to count the users who are currently connected with the

active exhibits.

maxSeats Some exhibits have a limit on how many users can connect to it at the same

time. The value of the ”currentSeat” attribute can only ever be as large as the

”maxSeat” value. When the ”currenSeat” value reaches its maximum the status of

the exhibit is changed to ”OCCUPIED”.

parentId The different locations are built in a hierarchical tree structure. At the top is the

museum itself, next are the different sections and finally the exhibits themselves. To

represent this structure GoD is using the ”parentId” of the Locations table.

Each location has a specific type which was already mentioned in section 4.3. These

types are stored in the table LocationTypes . In addition, each location has a status

that gives information about the condition of the location. These statues are defined in

table Statuses . In order to guarantee a certain sequence of locations, some exhibits

have neighbors. This neighbor relationship should ensure that an exhibit in the app is only

unlocked when the previous neighbor is already unlocked. Therefore, the Neighbors table

is used to store this relation.

Each location has multiple contents of different types e.g., a text or an image. The contents

are stored in the Contents table and the types are stored in the ContentTypes table.

Each content is always associated with a language stored in the table ContentLanguages .

Some content is presented from the perspective of a storyteller. The different storytellers

are stored in the Storytelelrs table.

64

4 Proof of Concept

Until the app receives a Bluetooth beacon, the locations are locked in the timeline. When

the beacon was received, a new entry in the Activity table is created. Now the location

is unlocked in the timeline. Furthermore, each time a beacon of a location is received or

when the user is navigating to the detail page of the location, an ActivityLogs entry is

created. The logs help to understand how the user moves through the exhibition. Each log

entry is related to an AcitivityLogType .

Finally, there is the Settings table of the database. This table stores some settings

of the server. First is the attribute ”guestNumber” which is used to create a new guest

user with a unique name. Then there are the fields ”wifiSSID” and ”wifiPassword” which

are needed to check if the users are connected with the correct network and to show the

network credentials in the app. Last but not least there is the field ”appVersion” which is

used to check if the app requires an update.

4.6 Active Exhibits

The last section of the Implementation focuses on the active exhibits. The exhibition in-

cludes two different types of active exhibits. The first type is called ’activeExhibit’ and the

second one is called ’notifyActiveExhibit’. Both include a separate Node.JS server which

is running on the exhibit’s computer. The exhibition includes three active exhibits. Two are

of type ’notifyActiveExhibit’ and the last of type ’activeExhibit’.

4.6.1 notifyActiveExhibit

For this type of exhibit, the app does not connect directly to the exhibit server. Instead,

communication is via GoD. The figure 4.14 shows the behavior if a user is joining an active

exhibit of this type. First, the app checks the status of the exhibit. Therefore, it requests the

status at GoD. Secondly, GoD responds to the current status of the exhibit. If the exhibit

has the status ”FREE” the OD can join the exhibit. Thirdly, the app notifies GoD that the

OD wants to join the active exhibit. GoD updates the status of the exhibit and then fourthly,

redirects the join message to the active exhibit. Additionally, GoD sends the exhibit the

relevant data of the user. Why does the app not have to connect directly to this type of

exhibit? The reason is that the exhibit does not need any additional data from the OD after

the user has connected. The exhibit only needs to know if a user connects and furthermore

the id and name of the user.

Figure 4.14 also shows the structure of the exhibit server, which is quite similar to GoD.

The exhibit server is connected to GoD via a socket client. The client calls methods of

the business controllers which use Sequelize to access the SQLite database. ”SQLite

65

4 Proof of Concept

is an embedded SQL database engine. Unlike most other SQL databases, SQLite does

not have a separate server process. SQLite reads and writes directly to ordinary disk

files”(SQLite.org 2019). Therefore, using an SQLite database is perfect for the use of the

exhibit server.

Figure 4.14. Schematic representation of the connection structure of the
”notifyActiveExhibits”.

The first exhibit of this type is the Legend Game of the Klosterneuburg exhibition. In this

exhibit, the user has the opportunity to play the legend of Klosterneuburg. In the Legend

Game, only one user can connect to the exhibit at a time. The game was developed with

Unity and needs, as already mentioned, only the user information. If the user successfully

recreated the legend, the exhibit server notifies GoD that the user unlocked a new part of

the code of arms. GoD than tells the user that a new part was unlocked. The visitor has

two possibilities two disconnect from the game. In the first approach, the user terminates

the connection in the legend game. The exhibit server notifies GoD. GoD then resets the

exhibit seat and reduces the current seat counter. Finally, GoD notifies the OD that it was

disconnected from the exhibit.

The second exhibit is the genealogical tree visualization of the Babenberger family. This

exhibit offers the user an interactive possibility to explore genealogy visualization. It pro-

vides additional information and a clearer presentation for the visitor. For this exhibit, a

maximum of two users can interact at a time. This is because the exhibit has two tablets

with which the users interact. The tablets update the visualization, which is projected with

66

4 Proof of Concept

a video projector. The basic behavior of the exhibit server is the same as in the Legend

Game. In this exhibit, however, GoD additionally sends the position (left or right tablet) that

the user has connected to.

4.6.2 activeExhibit

The exhibits of the type ”activeExhibit” need a direct connection to the exhibit server. There-

fore, the connection procedure is slightly different. Figure 4.15 shows the behavior if a user

is joining an active exhibit of this type. Also, with this type, the app checks first the status of

the exhibit. Secondly, GoD is responding to the current status of the exhibit. If the exhibit

has the status ”FREE” the OD can join the exhibit. Thirdly, the app is informing GoD that the

OD wants to join the active exhibit. GoD updates the status of the exhibit. Fourthly, the app

establishes a new socket connection with the exhibit server and sends it all relevant data.

From that point on, all communication is directly between the OD and the exhibit. When

the user wants to leave the exhibit, the user must do this in the app. The active exhibit is

only terminating the connection when the app of the user is not responding anymore for 60

seconds. Therefore, the exhibit server sends a ping to the ODs at regular intervals, and if

they do not respond within one minute, the server terminates the connection. Furthermore,

the exhibit server informs GoD to update the status of the exhibit since the user forcefully

left the exhibit.

Figure 4.15. Schematic representation of the connection structure of the ’activeExhibits”.

67

4 Proof of Concept

The structure of the server is similar to the notify type with the only exception that the server

also includes a Socket.io server like GoD. The notify server does not need a Socket.io

server since the ODs do not need a direct connection with the exhibit. But this type needs

a direct connection, and therefore it is necessary that the ”activeExhibit” types include a

Socket.io server.

For the exhibition of Klosterneuburg, one active exhibition was implemented. The exhibit

is a quiz with several questions about the facts of the exhibition. The exhibit permanently

displays a question and its answer options on a screen. Each question has a timer, and

when it has expired, the correct answer will be displayed on the screen. In addition, a

visualization shows how often the users have selected which answer option. The question

and answers are also displayed on the OD of the visitor. The user uses the app to answer

the questions and then sees in the app if the answer was correct. On a second screen,

there is also a high score list of all previously attended visitors.

68

5 Evaluation

So far this work presented, in addition to the similar work in the field of MDE and BYOD,

several museums which offer interactive exhibitions. Furthermore, various technical pos-

sibilities and a concept for a MDE were presented. The last chapter presented a proof

of concept for implementing an MDE with a focus on BYOD. The various areas such as

server, app and exhibits were described in detail. This chapter covers the evaluation of

the Klosterneuburg exhibition. The exhibition is running in the Klosterneuburg Abbey since

March, and the evaluation phase is lasted from March to the end of July 2019. The evalua-

tion focuses only on the technical functioning of the MDE and not on the user experience.

This chapter includes the hardware specification of the computers used for the server and

the exhibits. Furthermore, the chapter includes the bugs found in the evaluation period

and their implemented solutions. Finally, the chapter presents some statistics about the

exhibition, like the number of app downloads, the total number of registered users, and

more.

5.1 Hardware

Of course, the different parts of the exhibition need computer components on which the

applications can run. For the server, the exhibition uses a Hewlett Packard Enterprise

(HPE) server. To be more specific an HPE ProLiant ML110 Gen10 tower server. The per-

formance of this server is more than sufficient since it does not have to process thousands

of requests at a time. The following list shows the most important hardware components

of the server.

CPU: Intel(R) Xeon(R) Bronze 3106 CPU @ 1.70GHz

RAM: 32GiB DDR4 RAM

Storage: 2x 240GB SATA konfiguriert in RAID1

OS: Ubuntu 16.04

For the exhibit computers, we used different types of INTEL® NUC computers. For the

exhibition parts which do not require great performance NUC7I5DNKE computers where

69

5 Evaluation

used. For example, we used these computers for the tablets of the genealogical tree. The

hardware specifications are as follows:

CPU: Intel Core i5 3.5 GHz

RAM: 16GiB DDR4 RAM

Storage: 250GB M.2 SSD

OS: Windows 10

For the parts which need some more performance, we used the NUC7I7DNKE comput-

ers. These were used for the quiz or the genealogical tree visualization. The hardware

specifications are mostly the same apart from a more powerful CPU.

CPU: Intel Core i7 4.2 GHz

RAM: 16GiB DDR4 RAM

Storage: 250GB M.2 SSD

OS: Windows 10

Finally, we needed a more powerful computer for the legend game. Since the legend game

is the only exhibit which needs additional graphic performance, we used a NUC8I7HVK.

The NUC5 and NUC7 only have an onboard graphics card, which means that they can

display the standard Windows UI. However, they cannot be used for more graphically de-

manding applications.

CPU: Intel Core i7 4.2 GHz

RAM: 16GiB DDR4 RAM

GPU: Radeon RX Vega M GH graphics (8M Cache, up to 4.20 GHz)

Storage: 250GB M.2 SSD

OS: Windows 10

To automatically start the applications when the computer is starting, a batch file was

created. The script file checks if the corresponding folder exists and if the node modules are

installed. If that is the case, the script starts the exhibit servers and then the corresponding

application e.g., the legend game.

70

5 Evaluation

5.2 Server Utilization

In section 4.4.10 it was described that the tool ”pm2-server-monit” is used to monitor the

server load. Figure 4.12 showed an example output of this tool. The most important

metrics for the application are the used CPU capacity, the needed memory, the Event Loop

Latency, and the number of restarts. These metrics were monitored during the evaluation

period. The server’s event loop cannot handle multiple tasks at the same time. Instead,

tasks are queued and then processed one at a time. This means that a single task can be

stopped because the execution of the previous task takes a long time. The metric Event

Loop Latency indicates the average waiting time.

However, the tool only allows the monitoring of the data in real-time. If an administrator

wants to view a timeline of the collected data, he/she has to switch from the free version

to a paid one. However, since a subscription would cost a lot, it was waived for this work.

Instead, the load was observed in real-time when user tests were performed in the exhibi-

tion. Such user tests were conducted, for example, on the days 7th, 25th and 26th of June.

As the next section will show, the highest number of user accounts were created on these

days. While observing the server, the following metrics could be detected:

CPU capacity: The server never needed more than 20% of the CPU capacity. Normally

the value is between 5% and 10%.

Memory: During the user tests, the application needed a maximum of 825MiB.

Event Loop Latency: The maximum latency value was about 6ms.

Restarts: Most of the bugs which caused a server restart were found in March and April.

Therefore, there were no unwanted server reboots from mid-May onwards.

Throughout the evaluation period, only one server instance ran concurrently. Usually, sev-

eral instances are running on a server at the same time so that the latency time can be kept

as low as possible during a period with a high number of requests. A load balancer is used

so that requests can be distributed as evenly as possible to the instances. PM2 also offers

the possibility to run several instances of an application simultaneously and additionally of-

fers an integrated load balancer. However, this poses a problem because it is necessary to

ensure that the requests associated with a particular session ID are related to the process

from which they originate. This is due to certain transports such as XHR polling or JSONP

polling, which are based on multiple requests being fired during the lifetime of the socket.

If sticky balancing is not activated, an error will occur.

This problem would not occur if only the ”Websocket” transport protocol was enabled for

Socket.io. That is because the underlying TCP connection is kept open until the client

or server decides to terminate it. However, as it may be that a client does not support

71

5 Evaluation

WebSockets, the transport should not be restricted. Therefore, we have to ensure that the

client is always redirected to the same node, which is called sticky-session. A tool with

which this can be accomplished is called NGINX1.

Since there are now multiple Socket.IO nodes accepting connections, we need a way to

broadcast events to everyone or specific ”rooms” between these processes or computers.

For this purpose, the server can use the ”socket.io-redis” adapter2. ”Redis is an open-

source (BSD licensed), in-memory data structure store, used as a database, cache and

message broker” (redis.io 2019). Thus Redis is the interface in charge of routing mes-

sages.

5.3 Bugs

As described in section 4.4.10, the server management part includes a way to send the

administrator an email if an error occurs. This section covers the most important bugs

which arose in the evaluation period.

One of the first problems was the missing certificate authority (CA) file. At first, the server

used only the certificate and the key file to create the HTTPS server. However, a client with

only these two files cannot verify the authenticity of the certificate. This meant that even

the Webviews of the native iOS and Android app did not want to establish a connection

to the server because the certificate was untrustworthy. Adding the CA files resolved this

issue.

Another problem arose when a user suddenly quit the app, or the app suddenly crashed.

If that happened and the user was still connected to a ” notifyActiveExhibit ”, then the user

remained connected to this exhibit without a time limit. The reason was that there was

no direct connection between the OD and the exhibit, and therefore, there was no ping.

However, one can solve this problem because when the connection between the OD and

GoD is terminated, the server can respond to this ”disconnect” event. Since we store

for each user his/her current location, the server can separate the user from the exhibit.

The server knows which user it is because we added the token to the socket connection.

The user object is stored in the token. GoD then forwards the disconnect message to the

exhibit.

It is equally essential that the user is informed when an exhibit suddenly is unavailable.

However, GoD does not automatically know which socket connection belongs to an OD and

which to an exhibit. However, only user connections have a token in the socket connection.

If the connection, therefore, has a token, it must be a user. In addition, GoD stores the

1https://www.nginx.com/
2https://github.com/socketio/socket.io-redis

72

5 Evaluation

socket id of the exhibits. So if no token is verifiable, it will be checked if the id belongs to an

exhibit. If so, GoD changes the status to ’OFFLINE’ and informs all connected users that

the exhibit is no longer available.

One of the biggest problems was a bug in the socket middleware. Due to this bug, the

socket events were partly received twice at the server. Among other things, this meant that

the number of places for the exhibit was not increased by one; instead, it was increased

by two. Therefore, users could only use one tablet at the same time for genealogy visual-

ization. To prevent this, additional checks have been implemented for this functionality. For

example, it is now additionally checked whether the current position of the user does not

already correspond to the ” onExhibit ” position of the exhibit. If so, the second attempt to

register the same position is ignored. Although discovering this problem took quite some

time, it was quickly remedied. In the middleware, only a return statement had to be added.

It was already mentioned that the socket id of the ODs is stored in the database. Therefore,

if the exhibit disconnects the user, GoD needs to notify the OD. In the original setup, the

socket id was only saved in the database at login. However, it often happened that the

OD could not receive the disconnection message from GoD because the socket id had

changed. This could happen if the user moved the app to the background or enabled the

lock screen. To solve this problem, the socket id is saved again when the OD connects to

the exhibit.

Another problem was the naming for the guest users. When a user registers as a guest,

GoD automatically creates a name. The database stores a sequential number in the

database that is used to create a unique username. The database requires that the

username is unique. So GoD appends this sequential number to the name ”Guest”, e.g.

”Guest123”. Since a user can register with the name ”Guest124”, it could happen that GoD

could not create a new user with the next guest number. As a result, the user could not

register. To resolve this issue, a name check was implemented for the guest registry. If the

name already exists in the database, then the serial number is increased by one, and the

name is rechecked. That’s what the server does until it can find a name that does not yet

exist.

If the server had to be restarted due to an exception, then it happened from time to time

that the active exhibits could no longer connect to the server. The reason for this was that

although the connection could be restored the login event was not received. The solution

was to have the exhibit server periodically resend the login until it finally receives an answer.

It should also be noted that in a broadcast, all clients receive the sent message. However,

since clients can also connect to the server, which is not part of the app, broadcasts should

be sent with caution. Although the connection itself is secure if it is an HTTPS server, this

does not help if the client has also established a secure connection and then receives the

73

5 Evaluation

broadcast event. Therefore, no sensitive data should be sent in a broadcast event.

(a) Registered and guest users (b) Users split on iOS and Anroid

Figure 5.1. Statistic of the registered and guest users of the exhibition.

During the evaluation of user behavior in the project, it was found that it would be useful

to implement additional logs. The logs should help to track how the visitors behave in the

museum, how they move through the exhibition and which exhibits they look at. For this

purpose, the activity logs and the regular logs were implemented. With the activity logs,

one can evaluate the path of a user through the museum. The regular logs are used to

record when a user logs in, automatically logs in or logs out. In addition, it is recorded

whether he has answered correctly or incorrectly in the quiz and whether the visitor could

find an AR target.

During the user tests that we completed during the project, we noticed several times that

if Bluetooth beacons are too close to each other, the locations are triggered in the wrong

order. An example of this would be the entrance of the exhibition where sections one and

two partly overlap (see Figure 4.3). In order to prevent some exhibits from being triggered

too early, the concept of the neighbors was introduced, which was explained in Section 4.5.

In general, during the evaluation period, it was found that the Bluetooth beacons are too

inaccurate to determine the position of the visitors. In the exhibition of Klosterneuburg, we

were lucky that the exhibition is like a path which the user has to follow. Therefore, we had

no major problems with the beacon detection. However, at some places we had problems

that beacons have partly overlaid. In addition, difficulties were discovered with the regard

to the positioning of the beacons because persons or other objects can block the signals.

All these factors lead to an inaccurate position detection of the system. This inaccuracy

would be exacerbated if the exhibits were in a large room where the visitor can not easily

follow a path.

74

5 Evaluation

5.4 Statistics

This section briefly shows some statistics about the exhibition for the evaluation period.

For example, the app was downloaded 165 times for iOS and 276 times for Android. Fig-

ure 5.1(a) shows that in total, there were 93 registered users and 210 guest users. Fig-

ure 5.1(b) shows that 95 of these users were registered on an iOS device, and 208 were

created on an Android device. Of the registered users, 32 were created on an iOS and 61

on an Android device. For the guest users, the ratio is 63 iOS users and 147 Android users.

This shows very clearly that there were significantly more visitors with Android devices than

iOS users.

Figure 5.2 visualizes the registered users per day. Since the exhibition is not visited very

frequently, the visualization clearly shows that normally no more than five visitors are reg-

istered per day. There are only a few exceptions, but the clearest outliers are the days 7th

of June with 23 users and the days 25th and 26th of June, each with 20 users. On these

days e.g., school classes visited the museum to evaluate the app in the exhibition.

Figure 5.2. Statistic of the registered users per day.

Finally, figure 5.3 visualizes the unlocked and entered locations of the exhibition. Again,

the statistics show very clearly that the users most often visited the quiz. In the app, the

quiz was unlocked 306 times in the timeline and 512 times the detail view of the exhibit

was opened. Of these users, 197 participated in the quiz.

Figure 5.3. Statistic of the locations of the exhibition.

75

5 Evaluation

Furthermore, the statistic shows that the legend game was unlocked 116 times, and 90

users connected to the exhibit. Also, 109 users unlocked the genealogy visualization,

and 56 also connected to the active exhibit. The most frequently initiated exhibit of the

passive exhibits is the intro to section 1 and after that the exhibit with the title ”Miracle and

Witnesses”.

5.5 Summary

This chapter presented the outcome of the evaluation period of the Klosterneuburg exhibi-

tion. In addition to the hardware used and the possibilities of server monitoring, the found

bugs were presented. Finally, some statistics were presented which were collected during

the evaluation phase. The evaluation showed that the used hardware for the exhibits and

the server were sufficient. Furthermore, the used tools for the server utilization were suffi-

cient for the general usage of the exhibition. However, with the free version of the tools no

long-term statistics of the server metrics could be collected. Especially at the beginning of

the exhibition, some bugs were found that hindered the operation of the exhibition. In par-

ticular, the bug with the double events was quite challenging to solve, but when the initial

bugs were resolved, the exhibition ran quite stably.

As the statistics show, the majority of visitors prefer to use a guest account rather than a

registered one. In the distribution of the operating system, Android has more than twice as

many installations as Apple. Furthermore, for the active exhibits, the statistics have shown

that especially the quiz is very popular among visitors.

76

6 Conclusion

This thesis presented technical concepts for multi-device ecologies in museums where the

user can bring their own device (BYOD). Chapter 2 answered the questions ”Which inter-

active exhibits currently exist in museums?” and ”Which technical concepts are used?”.

To that end, the chapter first described the meaning of the terms MDE and BYOD. Fur-

thermore, the chapter presented similar research which deals with these topics and which

provide possible technologies for usage in MDE setups. In addition, the chapter presented

various different kinds of interactive exhibitions which are already implemented in museums

and what technologies they use. The research showed that there are hardly any museums

that offer an MDE and include the BYOD approach in their exhibitions. Furthermore, the

museums mostly use active location triggering approaches like optical markers or the input

of a code. Moreover, most museums use an app as a guide and do not offer an interaction

with an exhibit. Hardly any museums offer any active exhibits. And if they do, then these

exhibits are usually isolated and are not connected with other devices. If a museum offers

an MDE, the interaction is usually only possible with preconfigured loan devices or with an

ID card, which the visitor receives and with which he/she can identify himself/herself again

at each station.

Chapter 3 presented the technical concept and key elements of the MEETeUX MDE. For

some of the key elements the chapter showed different technical possibilities for the im-

plementation in an MDE. The central part of the work was the implementation of an self-

designed MDE with the focus on BYOD for the annual exhibition of Klosterneuburg. The

exhibition consists of an app, a variety of active and passive exhibits, and a server that

monitors everything. For each part of the exhibition, the concept and functionality were

described in detail. In addition, it was described how to manage the server and how the

CI / CD pipelines work which provide an easier and faster deployment method. Also, the

concept of the database was explained and which technologies were used for the final use

in the museum.

The final chapter described the evaluation phase of the exhibition. The chapter included

the used hardware of the exhibits and the server. Finally, the found bugs and their solutions

were described, and also some statistics of the exhibition were presented.

At the beginning of chapter 4 the key elements for the MDE of Klosterneuburg were pre-

sented. Each key element represents a research question that was answered in the Proof

77

6 Conclusion

of Concept chapter. The following section summarizes how each research question was

answered:

Server How can one implement a server which always knows the status of the exhibition

including all exhibits and the visitors ODs? More specifically, how can the server

handle the communication between all devices and furthermore, decide if a user can

currently interact with an exhibit or not?

The proof of concept chapter showed the implementation of the server. The MDE

has been designed so that each event is transmitted to the server. Each time the

OD receives a BLE beacon from an exhibit, the server is notified. Even if the user

changes the language in the app or opens the detail view of an exhibit, the server will

be notified. Therefore, the server stores all the data of a user that is necessary for the

exhibition. The exhibits also tell the server when they are available and the server

manages their status to inform the users. The use of the WebSocket technology

allows the server to instantly detect when a user or exhibit loses connection to the

server. Therefore, the server can update the status of the user or exhibit without

the devices actively sending a message to the server. The bi-directional connection

between all devices even allows the server to act as a relay and, for example, tell the

OD if the user has pressed the logout button on the exhibit even if there is no direct

connection between the two. In summary, the used technologies were a sufficient

choice for the implementation of the server with the required specifications.

App How does an app have to be designed so that it offers the possibility to access the

hardware of the device, offers a location awareness approach, provides a general

user interface and includes the functionality to interact with the various exhibits?

As chapter 4 presented, the designed app consists of a special setup including a

native iOS and Android app. The native part includes a webview in which an Angu-

lar project is displayed. The access to the hardware was also necessary because

the location awareness approach was using the Bluetooth functionality of the smart-

phones. In order not to have to develop the general user interface twice for the

visitors, we decided to create an Angular project for the app. Because the exhibits

also used the WebSocket technology, the communication between the app and the

exhibits was not a problem. In summary, the app could meet all previously defined

requirements.

Guest support How can the MDE provide an option for visitors to use the app as a guest

and still provide the user with the same functionality as the registered ones?

The integration of test accounts was quite simple and as the statistics showed the

user were using it frequently. Since the visitors do not have to provide credentials,

many users used guest accounts to explore the exhibition. Also the upgrade to a real

78

6 Conclusion

user account was not challenging. Furthermore, the server supports a middleware

were specific WebSockets events can be only accessable for registered users.

Exhibits How can the MDE provide different types of exhibits and also include a possibility

for the communication between the exhibit and the server or the app? Therefore, the

communication protocol will not be limited to the TUIO protocol.

As the proof of concept showed the MDE supports three different types of exhibits,

namely passive, interactive and active exhibits. However, the concept of the exhi-

bition is designed so that the server supports a variety of exhibit types. For the

communication between the exhibit and the server or the app the proof of concept is

using the WebSocket technology. In the evaluation phase, it has been shown that the

use of WebSockets works very well and also gives exhibits the ability to send data to

the server or the ODs. Therefore, the use of TUIO was not necessary.

Device Communication Is the WebSocket technology a sufficient approach for bidirec-

tional communication between all devices in a MDE?

The use of the WebSocket technology proved to be sufficient. As already men-

tioned this technology established multiple possibilities like broadcasting, discon-

nection alerts and a bidirectional communication between all devices. The imple-

mentation with the socket.io library was quite simple and even provides a backup

mechanism for those devices which do not support the WebSocket technology.

Location Awareness Is the usage of Bluetooth and Bluetooth Low Energy beacons a

sufficient approach for the location awareness?

As the evaluation phase has shown, the use of Bluetooth is not a sufficiently accurate

method for the location awareness approach. At the end a lot of testing and config-

uration was needed to make the location awareness with Bluetooth work. Hence, it

should be considered to change the location awareness approach in a future work.

Multi-Language Support How must the MDE be designed to give visitors the opportunity

to experience the exhibition in different languages?

As the Proof of Concept showed the support for multiple languages must be imple-

mented at three different parts. The text for the control elements is stored in the app

itself and therefore, the switch between the languages is quite simple and fast. The

contents of the exhibits are stored at the server and once the language is changed

the contents of the new language will be loaded from the server. Finally, the texts

for the interactive exhibits are stored in the exhibits themselves. If a user joins the

exhibit with his/her OD the language will be transmitted from the OD to the exhibit

and the exhibit changes the language.

79

6 Conclusion

6.1 Challenges

One of the biggest challenges is testing the different parts of the MDE. The difficulties start

when testing the app. Unfortunately, since the app consists of a native and a web part,

testing the app is not that easy. To check the complete functionality, both parts have to

be tested together. In addition, the reception of the Bluetooth beacons only works if the

app is installed on a real smartphone. There is no other choice than to test the app on

smartphones manually.

In addition, the MDE consists of several devices that interact with each other. Therefore,

it is necessary to test all parts of the MDE to ensure complete functionality. This means

testing takes a long time. Even finding a bug can take much time and be tedious in some

instances. If you look at the ”notifyActiveExhibit”, the app sends a message to GoD and

GoD forwards it to the active exhibit. To find the bug, one has to check every part of this

chain. An example of such a bug that took much time is the logout functionality which was

partially not forwarded.

The other big challenge is location awareness. As already mentioned the use of BLE bea-

cons often has an impairing inaccuracy. Therefore, a lot of testing and configuration was

needed to provide the best location triggering possible. At some points of the exhibition,

we needed to implement the neighbor functionality to provide a stable location triggering.

Thus, changing the location awareness technology will be discussed in the next section.

Another challenge was the thick walls of the exhibition building. These led to the difficulty

that the mobile phones repeatedly lost contact to the WLAN access points. For the regular

use of the app, this was not a problem as GoD is also accessible through the Internet.

However, the app then cannot interact with the active exhibits. If the user has just been

connected to an active exhibit, the loss of connection with an access point results in a

disconnection. In addition, at some points of the exhibition the visitors had no network

access at all and therefore, no Internet access. As a result, visitors were sometimes unable

to use the app at all.

6.2 Future Work

To sum up, the technical setup of the exhibition had some problems in the beginning, but

since these problems were fixed the exhibition is running quite stably. As mentioned earlier,

a big problem is the inaccuracy of beacon detection. Therefore, an important part of future

work would be to revise the location awareness of the exhibition. One option would be

a combination of ultrasound sounds and Bluetooth beacons, as described in section 3.4.

By combining the two technologies, the accuracy could be significantly increased. An

80

6 Conclusion

alternative would be to use Bluetooth 5.1 as soon as it is available. The new standard

includes a new feature called Direction Finding. This offers the ability to determine the

direction of objects. Bluetooth thus becomes an improved navigation system. The distance

to objects can be determined with the new standard down to a 1cm accuracy (Sebayang

2019).

In addition, in a future project, a more secure method for the login of the exhibit server

should be implemented. Currently, the exhibits only use their IP address to authenticate

themselves as an active exhibit. The server then stores the socket id to know to which client

the messages should be sent. Thus a hacker would have to find out only the IP address

of an exhibit to be able to log in with it. This would lead to two problems. Firstly, the real

active exhibit would then be unreachable for the user. Second, the hacker now receives

the user information intended for the active exhibit. Secondly, a more secure login option

should be developed. One possibility would be to implement a proper login by username

and password. After that, the exhibit, as well as the OD, could get a token with which

all subsequent events must be authenticated. In this setup, the username and password

would have to be stored in environment variables.

81

Bibliography

Loke, S. W. (2003, December 15). Service-oriented device ecology workflows. In Service-

oriented computing - ICSOC 2003 (pp. 559–574). International conference on service-

oriented computing. Springer, Berlin, Heidelberg. doi:10.1007/978- 3- 540- 24593-
3_38

Dini, R., Paternò, F., & Santoro, C. (2007). An environment to support multi-user interac-

tion and cooperation for improving museum visits through games. In Proceedings

of the 9th international conference on human computer interaction with mobile de-

vices and services - MobileHCI ’07 (pp. 515–521). The 9th international conference.

Singapore: ACM Press. doi:10.1145/1377999.1378062
Lim, C., Wan, Y., Ng, B., & See, C. S. (2007, May). A real-time indoor WiFi localization

system utilizing smart antennas. IEEE Transactions on Consumer Electronics, 53(2),

618–622. doi:10.1109/TCE.2007.381737
Tesoriero, R., Gallud, J. A., Lozano, M., & Penichet, V. M. R. (2008, March). A location-

aware system using RFID and mobile devices for art museums. In Fourth interna-

tional conference on autonomic and autonomous systems (ICAS’08) (pp. 76–81).

2008 fourth international conference on autonomic and autonomous systems (ICAS).

Gosier, Guadeloupe: IEEE. doi:10.1109/ICAS.2008.38
Echtler, F., Nestler, S., Dippon, A., & Klinker, G. (2009, November). Supporting casual

interactions between board games on public tabletop displays and mobile devices.

Personal and Ubiquitous Computing, 13(8), 609–617. doi:10.1007/s00779-009-0246-
3

Ghiani, G., Paternò, F., Santoro, C., & Spano, L. D. (2009, August). UbiCicero: A location-

aware, multi-device museum guide. Interacting with Computers, 21(4), 288–303.

doi:10.1016/j.intcom.2009.06.001
Shirazi, A. S., Döring, T., Parvahan, P., Ahrens, B., & Schmidt, A. (2009). Poker surface:

Combining a multi-touch table and mobile phones in interactive card games. In Pro-

ceedings of the 11th international conference on human-computer interaction with

mobile devices and services - MobileHCI ’09 (p. 1). The 11th international confer-

ence. Bonn, Germany: ACM Press. doi:10.1145/1613858.1613945
Terrenghi, L., Quigley, A., & Dix, A. (2009, November 1). A taxonomy for and analysis of

multi-person-display ecosystems. Personal and Ubiquitous Computing, 13(8), 583–

598. doi:10.1007/s00779-009-0244-5

82

https://dx.doi.org/10.1007/978-3-540-24593-3_38
https://dx.doi.org/10.1007/978-3-540-24593-3_38
https://dx.doi.org/10.1145/1377999.1378062
https://dx.doi.org/10.1109/TCE.2007.381737
https://dx.doi.org/10.1109/ICAS.2008.38
https://dx.doi.org/10.1007/s00779-009-0246-3
https://dx.doi.org/10.1007/s00779-009-0246-3
https://dx.doi.org/10.1016/j.intcom.2009.06.001
https://dx.doi.org/10.1145/1613858.1613945
https://dx.doi.org/10.1007/s00779-009-0244-5

Hardy, R., Rukzio, E., Holleis, P., & Wagner, M. (2010). Mobile interaction with static and

dynamic NFC-based displays. In Proceedings of the 12th international conference

on human computer interaction with mobile devices and services - MobileHCI ’10

(p. 123). The 12th international conference. Lisbon, Portugal: ACM Press. doi:10 .
1145/1851600.1851623

Kray, C., Nesbitt, D., Dawson, J., & Rohs, M. (2010). User-defined gestures for connecting

mobile phones, public displays, and tabletops. In Proceedings of the 12th interna-

tional conference on human computer interaction with mobile devices and services

- MobileHCI ’10 (p. 239). The 12th international conference. Lisbon, Portugal: ACM

Press. doi:10.1145/1851600.1851640
Broll, G., Reithmeier, W., Holleis, P., & Wagner, M. (2011). Design and evaluation of tech-

niques for mobile interaction with dynamic NFC-displays. In Proceedings of the fifth

international conference on tangible, embedded, and embodied interaction - TEI ’11

(p. 205). The fifth international conference. Funchal, Portugal: ACM Press. doi:10.
1145/1935701.1935743

Wang, R., Zhao, F., Luo, H., Lu, B., & Lu, T. (2011). Fusion of wi-fi and bluetooth for indoor

localization. In Proceedings of the 1st international workshop on mobile location-

based service (pp. 63–66). MLBS ’11. New York, NY, USA: ACM. doi:10 . 1145 /
2025876.2025889

Seyed, T., Burns, C., Costa Sousa, M., Maurer, F., & Tang, A. (2012, November 11). Eliciting

usable gestures for multi-display environments. (pp. 41–50). Proceedings of the 2012

ACM international conference on interactive tabletops and surfaces. ACM. doi:10.
1145/2396636.2396643

Boring, S. & Baur, D. (2013, March). Making public displays interactive everywhere. IEEE

Computer Graphics and Applications, 33(2), 28–36. doi:10.1109/MCG.2012.127
Rittenbruch, M. (2013). Supporting collaboration in large-scale multi-user, 8.

Bellucci, A., Malizia, A., & Aedo, I. (2014, January 1). Light on horizontal interactive sur-

faces: Input space for tabletop computing. ACM Computing Surveys, 46(3), 1–42.

doi:10.1145/2500467
Dang, C. T. & André, E. (2014, June 17). A framework for the development of multi-display

environment applications supporting interactive real-time portals. (pp. 45–54). Pro-

ceedings of the 2014 ACM SIGCHI symposium on engineering interactive computing

systems. ACM. doi:10.1145/2607023.2607038
Huang, D.-Y., Chen, S.-C., Chang, L.-E., Chen, P.-S., Yeh, Y.-T., & Hung, Y.-P. (2014, July).

I-m-cave: An interactive tabletop system for virtually touring mogao caves. In 2014

IEEE international conference on multimedia and expo (ICME) (pp. 1–6). 2014 IEEE

international conference on multimedia and expo (ICME). Chengdu, China: IEEE.

doi:10.1109/ICME.2014.6890233
Murata, S., Yara, C., Kaneta, K., Ioroi, S., & Tanaka, H. (2014, September). Accurate indoor

positioning system using near-ultrasonic sound from a smartphone. In 2014 eighth

83

https://dx.doi.org/10.1145/1851600.1851623
https://dx.doi.org/10.1145/1851600.1851623
https://dx.doi.org/10.1145/1851600.1851640
https://dx.doi.org/10.1145/1935701.1935743
https://dx.doi.org/10.1145/1935701.1935743
https://dx.doi.org/10.1145/2025876.2025889
https://dx.doi.org/10.1145/2025876.2025889
https://dx.doi.org/10.1145/2396636.2396643
https://dx.doi.org/10.1145/2396636.2396643
https://dx.doi.org/10.1109/MCG.2012.127
https://dx.doi.org/10.1145/2500467
https://dx.doi.org/10.1145/2607023.2607038
https://dx.doi.org/10.1109/ICME.2014.6890233

international conference on next generation mobile apps, services and technologies

(pp. 13–18). 2014 eighth international conference on next generation mobile apps,

services and technologies. doi:10.1109/NGMAST.2014.17
Winkler, C., Löchtefeld, M., Dobbelstein, D., Krüger, A., & Rukzio, E. (2014). SurfacePhone:

A mobile projection device for single- and multiuser everywhere tabletop interaction.

In Proceedings of the 32nd annual ACM conference on human factors in computing

systems - CHI ’14 (pp. 3513–3522). The 32nd annual ACM conference. Toronto,

Ontario, Canada: ACM Press. doi:10.1145/2556288.2557075
Lazik, P., Rajagopal, N., Shih, O., Sinopoli, B., & Rowe, A. (2015). ALPS: A bluetooth and

ultrasound platform for mapping and localization. In Proceedings of the 13th ACM

conference on embedded networked sensor systems (pp. 73–84). SenSys ’15. event-

place: Seoul, South Korea. New York, NY, USA: ACM. doi:10.1145/2809695.2809727
Seyed, T., Azazi, A., Chan, E., Wang, Y., & Maurer, F. (2015, November 15). SoD-toolkit: A

toolkit for interactively prototyping and developing multi-sensor, multi-device environ-

ments. (pp. 171–180). Proceedings of the 2015 international conference on interac-

tive tabletops & surfaces. ACM. doi:10.1145/2817721.2817750
Vepsäläinen, J., Di Rienzo, A., Nelimarkka, M., Ojala, J. A., Savolainen, P., Kuikkaniemi, K.,

. . . Jacucci, G. (2015, November 15). Personal device as a controller for interactive

surfaces: Usability and utility of different connection methods. (pp. 201–204). Pro-

ceedings of the 2015 international conference on interactive tabletops & surfaces.

ACM. doi:10.1145/2817721.2817745
Falk, J. H., Dierking, L. D., & Dierking, L. D. (2016). The Museum Experience Revisited.

Routledge. doi:10.4324/9781315417851
Grubert, J., Kranz, M., & Quigley, A. (2016, December 1). Challenges in mobile multi-

device ecosystems. mUX: The Journal of Mobile User Experience, 5(1), 5. doi:10.
1186/s13678-016-0007-y

Koukoulis, K. & Koukopoulos, D. (2016, October 31). Towards the design of a user-friendly

and trustworthy mobile system for museums. In Digital heritage. progress in cul-

tural heritage: Documentation, preservation, and protection (pp. 792–802). Euro-

mediterranean conference. Springer, Cham. doi:10.1007/978-3-319-48496-9_63
Blumenstein, K., Kaltenbrunner, M., Seidl, M., Breban, L., Thür, N., & Aigner, W. (2017).

Bringing Your Own Device into Multi-device Ecologies: A Technical Concept. In Pro-

ceedings of the 2017 ACM International Conference on Interactive Surfaces and

Spaces (pp. 306–311). ISS ’17. New York, NY, USA: ACM. doi:10.1145/3132272.
3132279

Cecchinato, M. E., Cox, A. L., & Bird, J. (2017, May 2). Always on(line)?: User experience

of smartwatches and their role within multi-device ecologies. (pp. 3557–3568). Pro-

ceedings of the 2017 CHI conference on human factors in computing systems. ACM.

doi:10.1145/3025453.3025538

84

https://dx.doi.org/10.1109/NGMAST.2014.17
https://dx.doi.org/10.1145/2556288.2557075
https://dx.doi.org/10.1145/2809695.2809727
https://dx.doi.org/10.1145/2817721.2817750
https://dx.doi.org/10.1145/2817721.2817745
https://dx.doi.org/10.4324/9781315417851
https://dx.doi.org/10.1186/s13678-016-0007-y
https://dx.doi.org/10.1186/s13678-016-0007-y
https://dx.doi.org/10.1007/978-3-319-48496-9_63
https://dx.doi.org/10.1145/3132272.3132279
https://dx.doi.org/10.1145/3132272.3132279
https://dx.doi.org/10.1145/3025453.3025538

Nishiyama, T., Mochizuki, M., Murao, K., & Nishio, N. (2017). Hybrid approach for reliable

floor recognition method. In Proceedings of the 2017 ACM international joint con-

ference on pervasive and ubiquitous computing and proceedings of the 2017 ACM

international symposium on wearable computers (pp. 569–576). UbiComp ’17. New

York, NY, USA: ACM. doi:10.1145/3123024.3124404
Petrelli, D., Marshall, M. T., O’brien, S., Mcentaggart, P., & Gwilt, I. (2017, April 1). Tangible

data souvenirs as a bridge between a physical museum visit and online digital expe-

rience. Personal and Ubiquitous Computing, 21(2), 281–295. doi:10.1007/s00779-
016-0993-x

Urano, K., Kaji, K., Hiroi, K., & Kawaguchi, N. (2017). A location estimation method using

mobile BLE tags with tandem scanners. In Proceedings of the 2017 ACM interna-

tional joint conference on pervasive and ubiquitous computing and proceedings of

the 2017 ACM international symposium on wearable computers (pp. 577–586). Ubi-

Comp ’17. New York, NY, USA: ACM. doi:10.1145/3123024.3124405
Kosmopoulos, D. & Styliaras, G. (2018, July 1). A survey on developing personalized con-

tent services in museums. Pervasive and Mobile Computing, 47, 54–77. doi:10.1016/
j.pmcj.2018.05.002

Koukopoulos, D. & Koukoulis, K. (2018, January 1). A trustworthy system with mobile ser-

vices facilitating the everyday life of a museum. International Journal of Ambient

Computing and Intelligence (IJACI), 9(1), 1–18. doi:10.4018/IJACI.2018010101
Othman, M. K., Idris, K. I., Aman, S., & Talwar, P. (2018). An empirical study of visitors’

experience at kuching orchid garden with mobile guide application [Advances in

human-computer interaction]. doi:10.1155/2018/5740520
Park, S., Gebhardt, C., Rädle, R., Feit, A. M., Vrzakova, H., Dayama, N. R., . . . Hilliges, O.

(2018). AdaM: Adapting multi-user interfaces for collaborative environments in real-

time. In Proceedings of the 2018 CHI conference on human factors in computing

systems (184:1–184:14). CHI ’18. event-place: Montreal QC, Canada. New York,

NY, USA: ACM. doi:10.1145/3173574.3173758
Vilkomir, S. (2018, June 1). Multi-device coverage testing of mobile applications. Software

Quality Journal, 26(2), 197–215. doi:10.1007/s11219-017-9357-7
Wiener Gewässer. (2018). "Wiener Wasserweg"-App als virtueller Tour-Guide für die Alte

Donau. Retrieved September 3, 2019, from https ://www.wien .gv .at/umwelt/
gewaesser/alte-donau/life/massnahmen/wasserweg.html

Android. (2019). Data and file storage overview. Retrieved August 1, 2019, from https :
//developer.android.com/guide/topics/data/data-storage

Angular.io. (2019). Angular - lifecycle hooks. Retrieved August 2, 2019, from https : / /
angular.io/guide/lifecycle-hooks

Apple. (2019). Keychain services. Retrieved August 1, 2019, from https : / /developer .
apple.com/documentation/security/keychain_services

auth0. (2019). JWT.IO. Retrieved July 25, 2019, from http://jwt.io/

85

https://dx.doi.org/10.1145/3123024.3124404
https://dx.doi.org/10.1007/s00779-016-0993-x
https://dx.doi.org/10.1007/s00779-016-0993-x
https://dx.doi.org/10.1145/3123024.3124405
https://dx.doi.org/10.1016/j.pmcj.2018.05.002
https://dx.doi.org/10.1016/j.pmcj.2018.05.002
https://dx.doi.org/10.4018/IJACI.2018010101
https://dx.doi.org/10.1155/2018/5740520
https://dx.doi.org/10.1145/3173574.3173758
https://dx.doi.org/10.1007/s11219-017-9357-7
https://www.wien.gv.at/umwelt/gewaesser/alte-donau/life/massnahmen/wasserweg.html
https://www.wien.gv.at/umwelt/gewaesser/alte-donau/life/massnahmen/wasserweg.html
https://developer.android.com/guide/topics/data/data-storage
https://developer.android.com/guide/topics/data/data-storage
https://angular.io/guide/lifecycle-hooks
https://angular.io/guide/lifecycle-hooks
https://developer.apple.com/documentation/security/keychain_services
https://developer.apple.com/documentation/security/keychain_services
http://jwt.io/

Beatty, M. (2019). Dotenv [Npm]. Retrieved July 25, 2019, from https://www.npmjs.com/
package/dotenv

Blumenstein, K., Breban, L., Taucher, C., Thür, N., & Seidl, M. (2019). Museums-Apps &

Installationen - MEETeUX Projekt. Retrieved from http://meeteux.fhstp.ac.at/wp-
content/uploads/2017/06/Recherche_MuseumsInstallationen_20170426.pdf

bmw-welt.com. (2019). BMW Museum App. Retrieved September 3, 2019, from https :
/ /www .bmw - welt . com : 443 / content / grpw/websites / bmw - welt_ com/de /
experience/popups/bmw-museum-app.html

chaijs.com. (2019). Chai. Retrieved July 25, 2019, from https://www.chaijs.com/
congstar.de. (2019). NFC - was ist das? was kann ich damit machen? | congstar. Retrieved

August 11, 2019, from https://www.congstar.de/handys/technik-news-trends/
nfc/

Depold, S. (2019). Sequelize. Retrieved July 23, 2019, from http://docs.sequelizejs.com/
Deutsches Museum. (2019). Deutsches Museum App. Retrieved September 4, 2019, from

https://www.deutsches-museum.de/angebote/app/
Deutsches Technikmuseum. (2019). Deutsches Technikmuseum - App. Retrieved Septem-

ber 3, 2019, from https://sdtb.de/technikmuseum/angebote-bildung/2502/
gotlandsmuseum.se. (2019). The Gotland Museum. Retrieved September 3, 2019, from

https://www.gotlandsmuseum.se/en/
Hallein, K. (2019). Der sprechende Kelte. Retrieved September 2, 2019, from https ://

play.google.com/store?hl=de
Hunsrück-Hochwald, N. (2019). Nationalpark-Ausstellung. Retrieved September 3, 2019,

from https : / /www .nationalpark - hunsrueck - hochwald . de /besucher / erleben -
angebote/nationalpark-ausstellung.html

Ideum. (2019). Hamline University Mississippi Multimedia Table. Retrieved September 2,

2019, from https ://archive . ideum.com/creative- services/hamline- university-
mississippi-multimedia-table/

Kaltenbrunner, M. (2019). TUIO. Retrieved September 2, 2019, from https://www.tuio.
org/

Kennedy Space Center. (2019). Kennedy Space Center Official Guide. Retrieved Septem-

ber 3, 2019, from https://www.kennedyspacecenter.com/info/kennedy- space-
center-official-guide

Kontakt.io. (2019). Ble beacons. Retrieved July 23, 2019, from https://kontakt.io/
Maritime Museum. (2019). Maritime Museum App. Retrieved September 3, 2019, from

https://www.maritiemmuseum.nl/maritime-museum-app
MEETeUX. (2019). MEETeUX. Retrieved August 8, 2019, from https://meeteux.fhstp.ac.

at/
mochajs.org. (2019). Mocha - the fun, simple, flexible JavaScript test framework. Retrieved

July 25, 2019, from https://mochajs.org/

86

https://www.npmjs.com/package/dotenv
https://www.npmjs.com/package/dotenv
http://meeteux.fhstp.ac.at/wp-content/uploads/2017/06/Recherche_MuseumsInstallationen_20170426.pdf
http://meeteux.fhstp.ac.at/wp-content/uploads/2017/06/Recherche_MuseumsInstallationen_20170426.pdf
https://www.bmw-welt.com:443/content/grpw/websites/bmw-welt_com/de/experience/popups/bmw-museum-app.html
https://www.bmw-welt.com:443/content/grpw/websites/bmw-welt_com/de/experience/popups/bmw-museum-app.html
https://www.bmw-welt.com:443/content/grpw/websites/bmw-welt_com/de/experience/popups/bmw-museum-app.html
https://www.chaijs.com/
https://www.congstar.de/handys/technik-news-trends/nfc/
https://www.congstar.de/handys/technik-news-trends/nfc/
http://docs.sequelizejs.com/
https://www.deutsches-museum.de/angebote/app/
https://sdtb.de/technikmuseum/angebote-bildung/2502/
https://www.gotlandsmuseum.se/en/
https://play.google.com/store?hl=de
https://play.google.com/store?hl=de
https://www.nationalpark-hunsrueck-hochwald.de/besucher/erleben-angebote/nationalpark-ausstellung.html
https://www.nationalpark-hunsrueck-hochwald.de/besucher/erleben-angebote/nationalpark-ausstellung.html
https://archive.ideum.com/creative-services/hamline-university-mississippi-multimedia-table/
https://archive.ideum.com/creative-services/hamline-university-mississippi-multimedia-table/
https://www.tuio.org/
https://www.tuio.org/
https://www.kennedyspacecenter.com/info/kennedy-space-center-official-guide
https://www.kennedyspacecenter.com/info/kennedy-space-center-official-guide
https://kontakt.io/
https://www.maritiemmuseum.nl/maritime-museum-app
https://meeteux.fhstp.ac.at/
https://meeteux.fhstp.ac.at/
https://mochajs.org/

Museum Tour Guides. (2019). Natural History Museum App Guide. Retrieved September

3, 2019, from https : //www.museumtourguides . com/home/product/natural -
history-museum-app-guide/

Paternò, F. (2019, April 4). Concepts and design space for a better understanding of multi-

device user interfaces. Universal Access in the Information Society, 1–24. doi:10 .
1007/s10209-019-00650-5

redis.io. (2019). Redis. Retrieved August 7, 2019, from https://redis.io/
Robbins, C. (2019). Winston [Npm]. Retrieved July 25, 2019, from https://www.npmjs.

com/package/winston
RxJS. (2019). Retrieved August 2, 2019, from https://rxjs-dev.firebaseapp.com/
Sánchez-Adame, L. M., Mendoza, S., Viveros, A. M., & Rodríguez, J. (2019, July 26). To-

wards a set of design guidelines for multi-device experience. In Human-computer in-

teraction. perspectives on design (pp. 210–223). International conference on human-

computer interaction. Springer, Cham. doi:10.1007/978-3-030-22646-6_15
Sebayang, A. (2019). Bluetooth 5.1 Direction Finding: Bluetooth bekommt eine Richtungssuche

[Golem.de]. Retrieved August 7, 2019, from https://www.golem.de/news/bluetooth-
5-1-direction-finding-bluetooth-bekommt-eine-richtungssuche-1901-139030.html

Socket.IO. (2019). Socket.IO [Socket.IO]. Retrieved July 23, 2019, from https://socket.io/
index.html

SQLite.org. (2019). SQLite home page. Retrieved August 6, 2019, from https://www.
sqlite.org/index.html

StrongLoop, I. (2019). Express - Node.js-Framework von Webanwendungen. Retrieved

July 25, 2019, from https://expressjs.com/de/
tagnology.com. (2019). WAS IST RFID? Retrieved August 11, 2019, from http://www.

tagnology.com/rfid/was-ist-rfid.html
Tristan Interactive. (2019). Canadian Museum for Human Rights. Retrieved September 2,

2019, from https : //apps .apple . com/us/app/canadian -museum- for - human-
rights/id916923574

wels.at. (2019). Helden-der-Roemerzeit. Retrieved September 3, 2019, from https://www.
wels.at/welsmarketing/tourismus/sightseeing/helden-der-roemerzeit.html

Wiggins, A. (2019). The twelve-factor app. Retrieved July 25, 2019, from https://12factor.
net/config

87

https://www.museumtourguides.com/home/product/natural-history-museum-app-guide/
https://www.museumtourguides.com/home/product/natural-history-museum-app-guide/
https://dx.doi.org/10.1007/s10209-019-00650-5
https://dx.doi.org/10.1007/s10209-019-00650-5
https://redis.io/
https://www.npmjs.com/package/winston
https://www.npmjs.com/package/winston
https://rxjs-dev.firebaseapp.com/
https://dx.doi.org/10.1007/978-3-030-22646-6_15
https://www.golem.de/news/bluetooth-5-1-direction-finding-bluetooth-bekommt-eine-richtungssuche-1901-139030.html
https://www.golem.de/news/bluetooth-5-1-direction-finding-bluetooth-bekommt-eine-richtungssuche-1901-139030.html
https://socket.io/index.html
https://socket.io/index.html
https://www.sqlite.org/index.html
https://www.sqlite.org/index.html
https://expressjs.com/de/
http://www.tagnology.com/rfid/was-ist-rfid.html
http://www.tagnology.com/rfid/was-ist-rfid.html
https://apps.apple.com/us/app/canadian-museum-for-human-rights/id916923574
https://apps.apple.com/us/app/canadian-museum-for-human-rights/id916923574
https://www.wels.at/welsmarketing/tourismus/sightseeing/helden-der-roemerzeit.html
https://www.wels.at/welsmarketing/tourismus/sightseeing/helden-der-roemerzeit.html
https://12factor.net/config
https://12factor.net/config

List of Figures

2.1 Picture of the AR marker in the Celtic Museum Hallein (Hallein 2019). 9

2.2 Tour of the art-historical museum in Vienna (Blumenstein, Breban, et al. 2019). 12

2.3 The multi-touch application of the Mississippi river (Ideum 2019). 13

3.1 Schematic representation of how ’traditional’ polling works. 19

3.2 Schematic representation of how long polling works. 20

3.3 Schematic representation of how Websockets work. 21

3.4 Manual code input in the app of the Canadian Museum of Human Rights (Tris-

tan Interactive 2019). 22

3.5 Proposed app structure of Blumenstein, Kaltenbrunner, et al. (2017). 24

4.1 MDE structure of the monastery of Klosterneuburg. 27

4.2 The used BLE beacons of Kontakt.io (Kontakt.io 2019) 28

4.3 Plan of the museum and exhibitions of Klosterneuburg. 28

4.4 Structure of the Klosterneuburg app. 29

4.5 Start screen of the Klosterneuburg app. 30

4.6 Timeline screen and side menu of the Klosterneuburg app. 31

4.7 Code of arms screen of the Klosterneuburg app. 32

4.8 The three different types of exhibits. 33

4.9 Project concept of the Angular project. 35

4.10 Schematic structure of the server/GoD. 44

4.11 Output of the ”pm2 list” command. 61

4.12 Server monitoring example of a pm2 application. 61

4.13 Database design of the GoD server. 63

4.14 Schematic representation of the connection structure of the ”notifyActiveEx-

hibits”. 66

4.15 Schematic representation of the connection structure of the ’activeExhibits”. 67

5.1 Statistic of the registered and guest users of the exhibition. 74

5.2 Statistic of the registered users per day. 75

5.3 Statistic of the locations of the exhibition. 75

88

List of Tables

4.1 All message types and their corresponding code ranges. 56

89

Listings

4.1 Source code of a state observable. 36

4.2 Source code of the communication with the iOS native part. 37

4.3 Source code of the communication with the Android native part. 37

4.4 Source code of the ”index.html” file to receive the device information. 37

4.5 Source code of the ”app.module.ts” file to receive messages from the native

part. 38

4.6 Source code for the ”send_device_infos” case. 38

4.7 Source code of the ”registerOD” method in the socket layer. 38

4.8 The content of the dotenv_example file. 42

4.9 The result of a guest user registration. 45

4.10 Source code of the server creation . 46

4.11 Socket event to register a new guest user at the server. 47

4.12 Authentication middleware for the socket connections. 48

4.13 The constructor of the Websocket class. 51

4.14 The constructor of the Sequelize class. 52

4.15 Sync method of the Conenction class. 52

4.16 Definition of the user table with Sequelize. 53

4.17 Definition of the table relationship between the users and locations tables. . 54

4.18 Creation of a guest user. 54

4.19 Definition of the Message class. 55

4.20 Definition of the Logger class. 56

4.21 Configuration for the unit tests for the server. 57

4.22 Unit test for the ”registerAsGuest” event. 58

4.23 Deployment configuration for the PM2 tool. 62

90

	Introduction
	MEETeUX Project
	Method

	Related Work
	Terminology & Technology
	Possible Applications

	Technical Concepts & Possibilities
	Basic Concept
	Key Elements
	Device Communication
	Location Awareness
	Active Location Triggering
	Passive Location Triggering

	OD/App

	Proof of Concept
	Key Elements
	Concept of the Multi-Device Ecology
	OD/App
	The Emperor's New Saint
	The Native Part
	The Web Part

	The Server - GoD
	GoD
	Environment Variables
	Server Structure
	Socket Layer
	Business Controller
	Database / Sequelize Layer
	Messages
	Logging
	Unit Testing
	Server Management
	Continuous Deployment

	Database
	Active Exhibits
	notifyActiveExhibit
	activeExhibit

	Evaluation
	Hardware
	Server Utilization
	Bugs
	Statistics
	Summary

	Conclusion
	Challenges
	Future Work

