
IfhIII
st.pölten

Information Security

Domain Generation Algorithms

Unification and Analysis - A Novel Framework

Diploma Thesis

For attainment of the academic degree of

Diplom-Ingenieur/in

submitted by

Georg HEHBERGER, BSc

is201804

in the

University Course Information Security at St. Pölten University of Applied Sciences

The interior of this work has been composed in LATEX.

Supervision

Advisor: Dipl.-Ing. Patrick Kochberger, BSc

Assistance: -

St. Pölten, May 30, 2022

(Signature author) (Signature advisor)

St. Pölten University of Applied Sciences, Matthias Corvinus-Straße 15, A-3100 St. Pölten,T: +43 (2742) 313 228, F: +43 (2742) 313 228-339, E:office@fhstp.ac.at, I:www.fhstp.ac.at

Ehrenwörtliche Erklärung

Ich versichere, dass

• ich diese Diplomarbeit selbständig verfasst, andere als die angegebenen Quellen und Hilfsmittel nicht

benutzt und mich sonst keiner unerlaubten Hilfe bedient habe.

• ich dieses Diplomarbeitsthema bisher weder im Inland noch im Ausland einem Begutachter/einer

Begutachterin zur Beurteilung oder in irgendeiner Form als Prüfungsarbeit vorgelegt habe.

• diese Arbeit mit der vom Begutachter/von der Begutachterin beurteilten Arbeit übereinstimmt.

Der Studierende/Absolvent räumt der FH St. Pölten das Recht ein, die Diplomarbeit für Lehre- und For-

schungstätigkeiten zu verwenden und damit zu werben (z.B. bei der Projektevernissage, in Publikationen,

auf der Homepage), wobei der Absolvent als Urheber zu nennen ist. Jegliche kommerzielle Verwertung/Nut-

zung bedarf einer weiteren Vereinbarung zwischen dem Studierenden/Absolventen und der FH St. Pölten.

Ort, Datum Unterschrift

iii

Kurzfassung
Verlässliche Kommunikation stellt eine wichtige Kernfunktion für verteilte Systeme dar, dies gilt ebenso für

Schadsoftware. Diese Diplomarbeit beschäftigt sich mit der Thematik kommunizierender Schadsoftware,

insbesondere den Codeteilen zur Generierung von Domainnamen, welche für die Kontaktaufnahme mit

zentralen Kommandostrukturdiensten verwendet werden. Die Herkunft und Verfügbarkeit dieser Codeteile,

auch ”Domain Generator Algorithm” oder kurz ”DGA” genannt, wird festgestellt und deren Quellcode

analysiert. Zur weiteren Funktionsanalyse wird eine DGA Basisklasse erstellt und die einzelnen DGAs

jeweils als abgeleitete Klasse implementiert. Durch die Verwendung von standardisierten Methoden werden

diese DGAs sodann auf ihre korrekte Funktionsweise und Vielfalt der erzeugten Domains geprüft.

In weitere Folge wird ein Framework entwickelt um den Quellcode der so erzeugten DGAs weiter zu unter-

suchen. So werden implementierungs- wie auch programmiersprachenabhängige Elemente erhoben, ausge-

wertet und entsprechende Metriken generiert. Dies erfolgt durch die automatisierte Analyse des abstrakten

Syntaxbaumes der jeweiligen DGAs und gibt Auskunft über die zu erwartende Komplexität bei der Über-

setzung des DGAs in eine weitere Programmiersprache. Es werden sämtliche Ergebnisse und Metriken

zusammengefasst und diskutiert um die Vorgänge im Inneren der untersuchten DGAs transparent darzule-

gen.

v

Abstract
As reliable communication is a vital function of any distributed system, it is also for malware. This thesis ex-

amines the different methods of how malware generates domains to enable communications with its central

command structures. Repositories containing such a Domain Generation Algorithm (DGA) are researched

and their contents are analyzed and extracted for further use in this document. By creating an abstract

class and reimplementing existing DGAs as child classes, their source code is brought into a common form

which enables functional analysis to verify correct working order. Output is verified by leveraging industry

standard webservices to conduct tests of authenticity for each generated domain, while also factors such as

unique domains generated per day are observed, compared and saved for additional processing.

Furthermore, this document provides a framework to analyze and evaluate DGA code in respective to lan-

guage specific elements of their current implementation. An abstract syntax tree analysis implementation is

used to extract metrics from each DGA’s source code. With regard to the estimated effort of reimplementa-

tion in another programming language this system of metrics may be then used as a reference framework.

The combination of the created and discussed functionalities brings transparency to the inner workings of

domain generation algorithms.

vii

Contents

1 Introduction . 1

1.1 Problem Description . 2

1.2 Research Question . 3

1.3 Contribution . 3

1.4 Thesis Outline . 3

2 Basics . 5

2.1 Domain Name System . 5

2.2 Command and Control . 7

2.2.1 Protocols . 7

2.3 Domain Generation Algorithm . 8

2.4 Abstract Syntax Tree . 9

3 Related Work . 13

3.1 Detection of DGAs . 13

3.2 Analysis of DGAs . 14

4 Approach . 17

4.1 DGA Collection . 17

4.1.1 Sources of DGAs . 18

4.1.2 Sampling DGAs . 19

4.2 Practical Implementation . 19

4.2.1 An Abstract DGA Class . 20

4.2.2 A DGA Child Class . 21

4.2.3 Coding Standards Enforcement . 24

4.3 DGA Analysis . 24

viii

Contents

4.3.1 Analyzation Method . 24

4.3.2 Analyzation Workflow . 25

4.3.3 Phase 1: Validity and Variance . 25

4.3.4 Phase 2: Collection of Metrics via AST . 26

4.3.5 Phase 3: Enrichment and Creation of Data Files . 27

4.3.6 Metrics: Modules . 29

4.3.7 Metrics: Parameters . 29

4.3.8 Metrics: Implementation Specifics . 30

4.3.9 Metrics: Complexity . 31

5 Evaluation . 35

5.1 3rd Party Dependency . 36

5.2 Proprietary or Complex Code Elements . 37

5.3 General Classifications . 41

6 Conclusion . 51

6.1 Future Work . 51

A Appendix: Repositories of DGAs . 53

B Appendix: Source Code . 55

B.1 DGA Child Class Skeleton . 55

B.2 DGA Analysis Phase 1: Validity and Variance . 57

B.3 DGA Analysis Phase 2: Collection of metrics via AST . 59

B.4 DGA Analysis Phase 3: Enrichment and creation of data files 64

C Appendix: Metrics Collected via AST . 71

List of Figures . 72

List of Tables . 73

Glossary . 77

Bibliography . 79

ix

1. Introduction

Malware is a lucrative business - in recent years many malware campaigns focused on generating revenue,

just like any legal software enterprise. The components of the bad actors product, however, drastically

differ from the classic business productivity suite found in modern office environments. Different types

of malware aim to accomplish different goals, botnets for instance run coordinated Distributed Denial of

Service (DDoS) attacks, spyware campaigns exfiltrate data from a victims network or ransomware variants

encrypt a business’ data and demand various kinds of currency on the promise of decryption. Of course, the

transition between these is always fluent.

Figure 1.1.: Malware, a lucrative business: A statistic [1] by Statista from 2021 shows the detections of

newly generated malware variants in the years from 2015-2020. The economy of bad actors

is thriving as more and more malicious payloads such as ransomware is deployed via zero-day

exploits.

There is one common denominator to be observed when examining various modern malware types, the

majority needs a facility to communicate with a central instance of authority. These services are so called

1

1. Introduction

”Command and Control (C2) servers” and are vital in issuing orders of action or receiving status updates

from deployed malware agents. As with most services reachable on the internet the C2 servers are issued

one or more domain names to be contacted at.

It may be considered a bit overly dramatic to classify those generated domain names as an achilleas heel to

all sorts of malware, but they undeniably play a significant role [2] in it’s proper operation.

This fact lends great importance to the task of analyzing malware and the domains it generates to operate. In

academic or cyber range settings it is imperative to have a toolkit at hand to enable or aid various trainings

scenarios. Of what concrete use could a malware extracted, modularized and working DGA be? There are

many possible use cases, for example the automated generation of arbitrary training malware samples for

reverse engineering in an academic environment. Another purpose would be the creation of an environment

to test the capabilities of network security appliances detecting malware traffic. Further, methods to create

large training sets for machine learning algorithms [3] aiming to find malware domains can be implemented.

1.1. Problem Description

Interested parties, such as security researchers, are inclined to analyze as many domain generation algo-

rithms as possible for the reasons described above. This however is not a trivial task. There are many factors

and circumstances preventing an individual from starting a thorough DGA analysis.

The first obstacle is intrinsic to the matter at hand: a domain generation algorithm is an integral part of an

active malware, as such analyzing a domain generation algorithm often bears the risk of being contaminated

with live malware. This is something that should be duly avoided in a training or academic scenario. Second,

when - or better, if - extraction of a domain generation algorithm from a malware sample is successful it

still cannot be analyzed right away. Malware and it’s components are often obscured [4] by the creator

to explicitly avoid such scenarios. This creates the significant challenge of reverse engineering complete

malware samples and extracting or even recreating the domain generation algorithm in code.

Further, if malware samples are readily available through online sources there are still some precautions

to take. The algorithm must be vetted in terms of reliability, a domain generation algorithm that does not

generate valid malware domains found in the wild is useless for most training scenarios. This vetting process

needs to be standardized to ensure consistent results across the analyzed algorithms. This leads to the next

challenge: the implementation process of the extracted domain generation algorithm is completely in the

hand of the individual executing that task.

The obtained samples may vary wildly in code complexity, coding language and implementation language

2

1. Introduction

specific libraries or concepts. Researchers need to create project-specific standardized methods or frame-

works to create comparable domain generation algorithms for analyzation and further use. Re-implementing

available domain generation algorithms may thus be considered a complex problem.

1.2. Research Question

As described in section 1.1 there are many pitfalls and problems associated with procuring, analyzing and

reimplementing domain generation algorithms. This paper aims to provide solutions to some of the above

mentioned challenges and provide mitigation strategies for others. In particular, the following topics shall

be examined:

The collection and retrieval of domain generation algorithms: Are there specific online resources

which serve as reliable sources of domain generation algorithms? Where may such samples of DGAs

be obtained? Are there means an methods to test the functional integrity and reliability of said algo-

rithms? Is there related work that may augment such efforts?

Analyzing domain generation algorithms: What can be done to bring found-in-the-wild domain gen-

eration algorithms into a format that increases comparability between them? Which collection of

metrics can be designed to render domain generation algorithms fit for efficient reimplementation

into other languages?

Evaluating measurements and metrics: Using metrics, may domain generation algorithms be clus-

tered into groups of candidates especially feasible for reimplementation into other languages?

1.3. Contribution

This thesis contributes to the field of academic malware research. Knowledge about the analyzation process

of domain generation algorithms is generated and made useable to the reader in multiple forms.

First, a DGA testing suite is introduced to embed DGAs into a common abstraction and check their func-

tional integrity. Secondly the analyzation framework creates metrics to evaluate and classify DGA samples.

Both, including the yielded results, may be used to conduct malware research in academic settings more

efficiently.

1.4. Thesis Outline

This document is organized in several parts.

3

1. Introduction

Chapter 1 gives a quick introduction and lays out the motivation behind this thesis. Further the research

questions are scoped and an outlook of the contribution is provided. Chapter 2 describes certain fundamental

concepts and prerequisites to provide basic knowledge about the advanced topics processed later in the

document. Chapter 3 lists the related work contributing to the broader scope of the thesis. In chapter 4

the approach to answering the research questions is described and subsequently the results are evaluated in

chapter 5. Chapter 6 concludes and sums up the results that were found out during the research work done,

an outlook on future work is provided.

4

2. Basics

This explains basic knowledge required to understand the rest of the work.

2.1. Domain Name System

Each device participating in an Internet Protocol (IP) network is assigned a numerical address. This nu-

merical address is used to establish communication between devices. In most cases these addresses exploit

properties which may interrupt or complicate communication attempts, such as:

• the IP address may change [5, p. 12] over time.

• the IP address is hard to remember.

• more than one service [6, p. 44] may be served via a single IP address.

• multiple IP addresses may provide the same service in load balancing [7, p. 44] scenarios.

A better way to identify devices or services on an IP network is the use of domain names [8]. Domain names

used on networks for public communication follow the common notation shown in table 2.1

Host Part(s) Domain Part Top-level Domain

www example org

gitlab.nwt fhstp ac.at

Table 2.1.: Samples of full qualified domain names: This table displays the building blocks for common

domains used on the public internet. Domains are presented split up in their different parts: host,

domain and top-level.

The Host Part, Domain Part and Top-level Domain are referenced as labels [9, p. 7] and are combined

together via a "." to represent the full qualified domain name or FQDN.

The domain name system is a distributed facility to translate domain names into IP addresses. A Domain

Name System (DNS) server receives client requests containing a specific domain name and returns the

matching IP address from it’s database. The single DNS records stored on a DNS server are dynamic and

5

2. Basics

may be altered to reflect IP address changes of devices or services on the network. Further, DNS records

may reference a single domain name to many IP addresses, and vice-versa, a single IP address may be

referenced by many domain names [9, p. 14].

On the public internet DNS servers form a hierarchy [9, p. 2] to distribute responsibility towards the re-

specitve domain owners. This ensures that only the designated owners of a domain may change DNS

records within this domain or delegate the right to modify sub-domain names to a subordinate entity.

1 georg@AUDEMARS:~$ dig example.com A @8.8.8.8

2 ;; Got answer:

3 ;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 26854

4 ;; flags: qr rd ra ad; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 1

5
6 ;; OPT PSEUDOSECTION:

7 ; EDNS: version: 0, flags:; udp: 512

8 ;; QUESTION SECTION:

9 ;example.com. IN A

10
11 ;; ANSWER SECTION:

12 example.com. 6750 IN A 93.184.216.34

13
14 ;; Query time: 17 msec

15 ;; SERVER: 8.8.8.8#53(8.8.8.8)

Listing 2.1: Querying a designated DNS resolver to receive the IP address of an Full Qualified Domain
Name (FQDN) available on the public internet.

A user may query a DNS designated resolver to obtain the IP address assigned to an FQDN. This process

is shown in listing 2.1 via the tool dig. The command executed orders the dig utility to query the public

resolver listening on IP ”8.8.8.8” to reply with the IP address of ”example.com”. The resolver then looks up

the IP address in it’s internal cache. If the record cannot not be retrieved the resolver queries the authoritative

DNS server for the desired FQDN. This process is fully transparent to the user. The DNS server then sends

back the result to the client, this may be the IP address received from either cache or query, or, in case of a

non-existent FQDN an ”NXDOMAIN” answer, shown in listing 2.2.

1 georg@AUDEMARS:~$ dig does-not-exist.example.com A @8.8.8.8

2 ;; Got answer:

3 ;; ->>HEADER<<- opcode: QUERY, status: NXDOMAIN, id: 34213

4 ;; flags: qr rd ra ad; QUERY: 1, ANSWER: 0, AUTHORITY: 1, ADDITIONAL: 1

5
6 ;; OPT PSEUDOSECTION:

7 ; EDNS: version: 0, flags:; udp: 512

8 ;; QUESTION SECTION:

9 ;does-not-exist.example.com. IN A

10
11 ;; AUTHORITY SECTION:

6

2. Basics

12 example.com. 517 IN SOA ns.icann.org. noc.dns.icann.

org. 2022031411 7200 3600 1209600 3600

13
14 ;; Query time: 23 msec

15 ;; SERVER: 8.8.8.8#53(8.8.8.8)

Listing 2.2: Querying a designated DNS resolver to receive the IP address of a non-existent FQDN.

2.2. Command and Control

The general, military, definition of command and control was first established in 1988 by the NATO as

follows: "Command and control is the exercise of authority and direction by a properly designated individual

over assigned resources in the accomplishment of a common goal" [10]. This concept is transferred to the

digital domain as the system known as ”command and control infrastructure” or simply ”C2 infrastructure”

to manage malware deployments.

In most scenarios an internet connected server acts in the role of the properly designated individual as a

central endpoint. The malware clients use this server for multiple purposes during the lifecycle of a malware

campaign. When the malware is first deployed it may send commands to the server to ”check-in” and receive

additional instructions. These instructions may contain directives to carry out specific commands on the

infected system or download additional payloads from the server. Further, the C2 infrastructure may serve

as the endpoint to upload stolen data from infected systems. Some malware variants enable their client

infrastructure to self-destruct when receiving a certain command from the server, this then concludes the

lifecycle of a malware campaign.

2.2.1. Protocols

An early protocol used for command and control by malware campaigns is the ”internet relay chat” [11]

service or ”IRC”. This distributed chat platform was originally invented to provide a textual communications

platform for humans. Due to it’s simple protocol and scalability it was quickly adopted to serve as the

communications channel [12] for many C2 infrastructures. As organic usage of the IRC service declines

throughout the years [13] it has become more and more common for businesses to simply drop IRC packets

at firewall level to block malicious C2 traffic.

The HTTP protocol [6] is client-server oriented, text based and inherently stateless. These properties make

it an ideal candidate to facilitate command and control messages. Further, with HTTP being the top most

observed protocol [14] on the public internet it’s a non-trivial problem to reliably detect command and

7

2. Basics

control traffic [15] disguised as benign internet traffic. Thus, HTTP is considered the current state-of-the-art

protocol [16] to enable a malware command and control communications infrastructure.

2.3. Domain Generation Algorithm

Resilient communication dependent applications rely on domain name system (DNS) resolution to map the

given name of an communications endpoint (DNS entry) to an IP address. This ensures the desired named

endpoint is available as long as the DNS entry correctly references the current IP address. If the DNS entry

itself is unavailable or incorrectly configured the capability of the application to communicate may be fatally

impacted. This scenario naturally also applies to malware applications.

There are many ways in which domains used for communication with a command and control infrastructure

may be rendered useless. A common scenario for businesses is to blacklist the domain on firewall level

to mitigate the impact malware may have on the IT infrastructure. If domains are used frequently for the

distribution of malware or the purpose of enabling a command and control infrastructure they may also show

up on public threat feeds [17] [18], which in turn firewalls may ingest to automatically block traffic upon.

Further a domain may be seized by the authorities [19] via their respective registrar to redirect any traffic

away from the command and control infrastructure, rendering them useless.

For a malware author it is imperative to make the seizure of domain names impossible or impractical and

thus preserve the communication between the malware and the command and control infrastructure.

As the name implies a domain generator algorithm creates internet domain names based on certain properties

and inputs. Commonly a domain generator algorithm consists of 4 major components. The seed, a list of

top-level domains, the algorithm itself and the output.

The seed in a domain generator algorithm provides a similar function as in common pseudo random number

generators. The seed is the base from which the output is calculated from. The seed may be provided in

many formats, it may be hardcoded into the malware or it may be derived from an external factor such as

the current date or the stock value of a publicly traded company.

The top-level domains are selected by the malware author and in most cases hardcoded into the malware.

During the domain creation process they are combined with the generated domain name to form a valid

routable internet domain name.

The algorithm is considered the main part of the domain generator algorithm. Based on the given input seed

one or more domain names are calculated. The number of calculated domains per seed depends on the actual

implementation and intention of it’s author. For example some algorithms provide a very large number of

8

2. Basics

Seed Top-level Domain Algorithm Output

MD5 Hash

of Datestring

co.cc, cz.cc, .info, .org Win32/Bamital 37C716B1EF8A468B4301314DCCE830FA.cz.cc

Date values .online .tech .support Mirai vmdefmnsdoj.tech

xpknpxmywqsr.online

oornsduuwjli.tech

Hardcoded .com DirCrypt pibqzedhzwt.com

Table 2.2.: Examples of generated domains and their respective inputs [20]: DGAs generating domains

require individual inputs. While the top-level domain(s) is usually a hard coded array that is

looped through, the seed varies from a simple number to a construct of dates, characters or non-

deterministic factors such as twitter posting or stock prices. [21]

domains making it unfeasible for law enforcement to suppress communication by just preregistering all

calculated domains.

The output commonly consists of a list of one or more publicly routable internet domains. Depending on

implementation the malware tries to initiate communications via one or more of the generated domains. In

case of the famous conficker.c [22] worm the malware created 50.000 domains per day of which it attempted

to use 500 each day.

Table 2.2 provides a small set of domain generation algorithms samples [20] found in the wild along with

their respective seed, top-level domains and a subset of the generated domains. Subsequently these, or a

subset of these domains are registered by the attacker and used as the endpoint of the command and control

infrastructure to enable malware communications. As long as the seed and it’s origin remain a secret the

domains generated by the malware application seem random or inconspicuously to the observer.

2.4. Abstract Syntax Tree

Computer programs may be written in many different programming languages. The fundamental process of

creating an executable file from source code written in an imperative programming language is the process

of compiling [23] said source code. Taking Python as an example there are several fundamental steps [24]

during compilation.

Tokenization: Source code is parsed and based on language specific rules - or grammar files - transformed

into tokens [25]. This can be considered as splitting text into structured chunks of information.

9

2. Basics

Abstract Syntax Tree creation: Tokens are, based on rules, grouped together into a structured tree con-

sisting of several nodes, representing the source code elements.

Abstract Syntax Tree transformation into a Control Flow Graph: The CFG is a directed graph [24]

derived from the abstract syntax tree that models the actual flow of the program.

Creation of bytecode based on the Control Flow Graph: The resulting bytecode is then executed

by the CPython virtual machine.

How the binary is executed after compilation is heavily language dependent. In terms of Python this happens

via the CPython virtual machine executing the resulting bytecode [25]. The most important step to further

understand this document lies within the second step of this process, the creation of the Abstract Syntax

Tree (AST).

The AST is a structured abstract representation of the source code, in case of Python it is specified using the

Zepyhr [26] language. It consists of hierarchical nodes containing all source code constructs such as expres-

sions, statements, etc. This gives the researcher the ability to inspect, analyze and compare a normalized

version of the source code by looping through all nodes and interpreting the results.

1 import ast

2
3 # This creates an abstract syntax tree from the given source code.

4
5 myast = ast.parse("print(1 + 2)")

6
7 # This prints the AST. The ast.dump() method retrieves the AST as a formatted

string from the object

8 print(ast.dump(myast))

Listing 2.3: A small Python program generating and outputting an AST of a given piece of code.

Listing 2.3 shows a small Python script generating an AST from a given source code snippet. As seen in line

4, the code prints out the addition of two integers. Further the ast.dump() method to output a user readable

version of the AST is demonstrated.

In listing 2.4 the corresponding output is shown. The function name - in this case ”print” can easily be

identified, as well as the ”add” operation with it’s two inputs as constants, in this case ”1” and ”2”. This is

considered the AST representation of the above mentioned printing and addition of the two integers.

1 Module(body=[Expr(value=Call(func=Name(id=’print’, ctx=Load()), args=[BinOp(

left=Constant(value=1, kind=None), op=Add(), right=Constant(value=2, kind=

None))], keywords=[]))], type_ignores=[])

Listing 2.4: The output of an AST generated by the dump() method

For the sake of completeness it shall be mentioned that the AST may be modified [27] during compile time

to make changes to the final program. While this is a mighty functionality it is well beyond the scope of this

10

2. Basics

document. In summary, the AST can be considered a truly capable tool to analyze Python source code and

generate a quantitative analysis of all containing elements comprising the program.

11

3. Related Work

This chapter provides an overview about work related to this document. The research in the field of malware

is highly diverse and this stands also true when looking at the domain of DGAs. First, some of the research

in the field of detecting DGA generated domains is given. Secondly papers and scientific projects about

the analyzation of DGAs are examined. This chapter includes multiple viewpoints: an external view on the

products - the domains - DGAs generate and an internal view on how the DGAs create said domains and

which ”ingredients” or seeds are consumed by different DGAs.

3.1. Detection of DGAs

The detection, classification or identification of found-in-the-wild domains as DGA generated is not part

of core content of this document. However the verification of domains created by reimplemented DGAs is

fundamental to this research, thus a broad overview of related work in this field adds value to the general

narrative.

Detecting domains generated by malware to enable C2 communication is a task that already many re-

searchers have picked up. Given the fundamental importance of this topic research is still ongoing and

will continue to do so. When looking at the various research efforts it can be determined that detecting new

DGAs in the wild is an ongoing game of cat and mouse between malware authors and vendors of information

security products.

DGAs tend to become more and more complex while detection mechanism start to utilize modern meth-

ods such as machine learning approaches and artificial intelligence. Reviewing research efforts over time

documents this trend.

As one of the first research papers about central botnet communication Detecting Algorithmically Gener- 2010

ated Malicious Domain Names [28] examines the possibility of detection via passive DNS analysis. On

the premise of not having a reverse engineered DGA sample available Yadav et al. try to algorithmically

detect malware generated domains by employing various statistical methods, such as character distribu-

tion, Kullback-Leibler divergence or Jaccard index. The methods considered in this paper worked to the

13

3. Related Work

researchers satisfaction, given the rather ordinary methods of domain generation at that time.

In Detecting DGA malware using NetFlow [29] the authors try to indirectly detect DGA based malware2015

by analyzing not the generated domains themselves, but certain properties of the network packet stream of

individual hosts. Grill et al. leverage NetFlow information from networking hardware to identify endpoints

trying to resolve an unusual high number of domains in comparison to the actual data transmitted. This

paper provides insight to the sheer number of potential malware domains generated and queried each day.

The authors succeed in detecting the ”Shiz”[30] malware in a corporate network by the techniques described

above.

In A Machine Learning Framework for Studying Domain Generation Algorithm (DGA)-Based Malware:2018

14th International Conference, SecureComm 2018, Singapore, Singapore, August 8-10, 2018, Proceedings,

Part I [31] a training set of malware domains is acquired over a period of over six month. These are then

fed into the proposed machine-learning framework to create a two-level approach: in the first level test data

domains are clustered and classified to detect any DGA created domains. In the second step the machine-

learning framework aims to identify the generating DGA for each malware domain. Chin et al. provide

accuracy numbers of 95.14% in the first level and 92.45% in the second.

3.2. Analysis of DGAs

A slightly similar but yet different discipline is the analyzation of DGAs themselves and the various under-

lying concepts of actually creating domains. This research did benefit from the various information about

DGAs found in the following papers. For example the description about the inner workings of DGAs and

their placement into specific functionality clusters based on PRNG input factors.

Vishwakarma [32] describes multiple DGA Families in his thesis Domain Name Generation Algorithms2017

[online] [32]. His research assigns DGAs into four different classes based on either deterministic or non-

deterministic seed usage and time dependence or independence. Further a concept of C2 infrastructure

classification is defined. Vishwakarma clusters them into either decentralized, centralized or locomotive -

where only the latter two are DNS dependent and as such relevant for further research.

In A Comprehensive Measurement Study of Domain Generating Malware [21] Plohmann et al. researched2016

the actual output of DGAs in the wild, given real world seeds and timespans when the specific DGAs

were active. Based on this output further metrics per DGA a derived, this also gives insight into domain

registration event patterns and the strategy of the malicious actors behind botnets. Being a comprehensive

measurement study a very broad range of DGA families are observed and analyzed. One goal of the paper

14

3. Related Work

is to make the raw data output from the research available to other researchers. After reaching out to the

author, credentials to the DGArchive - Fraunhofer FKIE [20] could be obtained. This software platform

enables researchers to run different DGAs on different dates to analyze their output. In this research this

functionality is used to test if the DGA is working and their output is valid before commencing with code

analysis.

15

4. Approach

This chapter describes the lifecycle of the DGA code analysis done in this paper. The first section provides

a brief quantitative overview of the DGA landscape and then continues with the concept of DGA collection

and the criteria on which DGAs were considered for evaluation. The practical implementation section then

elaborates on how each DGA’s code was brought into a common form to ensure comparability between

them. In the main section about DGA analysis an overview about the workflow of testing and examining

properties of the DGA’s source code used is given. Further an overview about the various metrics used is

provided and augmented with samples as deemed necessary.

4.1. DGA Collection

According to industry sources [33] [34] there are approximately 75 DGA families and subfamilies observ-

able in the wild at the time or writing. These DGAs are active in terms of the possibility to have syntactically

correct domains generated by them.

• ABCBOT

• ANTAVMU

• BAMITAL

• BANJORI

• BEBLOH/URLZONE

• BEDEP

• BEEBONE

• BIGVIKTOR

• BLACKHOLE

• CCLEANER

• CHINAD

• CONFICKER

• COPPERSTEALER

• COREBOT

• CRYPTOLOCKER

• DIRCRYPT

• DROMEDAN

• DYRE

• EMOTET

• ENVISERV

• FEODO

• FLUBOT

• FOBBER

• G01

• GAMEOVER

• GEODO

• GOZI

• GSPY

• HESPERBOT

• KFOS

• KRAKEN

• LOCKY

• M0YV

• MADMAX

• MATSNU

• MIRAI

• MONEROMINER

• MUROFET

• MYDOOM

• NECRO

• NECURS

• NGIOWEB

• NYMAIM

• OMEXO

• P2P

• PADCRYPT

• PANDABANKER

• PIZD

17

4. Approach

• PROSLIKEFAN

• PT

• PUSHDO

• PYKSPA

• QADARS

• QAKBOT

• RAMDO

• RAMNIT

• RANBYUS

• ROVNIX

• SHIFU

• SHIOTOB

• SIMDA

• SISRON

• SPHINX

• SUPPOBOX

• SYMMI

• TEMPEDREVE

• TINBA

• TINYNUKE

• TOFSEE

• TORDWM

• UNKNOWNDROPPER

• UNKNOWNJS

• VAWTRAK

• VIDRO

• VIRUT

• VOLATILE

• XSHELLGHOST

For this document, this list of DGAs represents the foundation of the authors DGA procurement effort. For

a DGA to be a valid candidate for further analyzation in this work it has to have the following properties:

Availability: The DGA source code is readily available from a free public source. This can either be a

software repository, the work of a fellow researcher or derived from write-ups or other analyzation

efforts from commercial security vendors.

Condition: The acquired source code is written in a high-level programming language.

Functionality: The DGA cannot make use of external non-deterministic sources of randomness which

cannot be reconstructed within a closed lab environment. This includes sources like stock prices or

information from public short messaging services.

4.1.1. Sources of DGAs

Researching the given list of possible DGAs leads to certain source code repositories. Reviewing this

sources reveals that the programming language python is prevalent when reimplementing DGAs for further

examination or analysis. After examination, three public git repositories remained as best choice to receive

DGAs, while the source code for the implementations used in the private DGArchive [20] is not shared by

the author. However, the provided Application Programming Interface (API) to test the validity of DGA

generated domains is incredibly useful to any researcher in this field.

These three repositories provide approximately 42 unique DGA algorithms at the time of writing:

• dga-collection by pchaigno

• DGA by andrewaeva

• domain_generation_algorithms by baderj

A more detailed overview of the considered repositories is provided in appendix A, table A.1, the list of

unique DGAs is shown below.

18

4. Approach

• BANJORI

• BAZARBACKDOOR

• CHINAD

• COREBOT

• DIRCRYPT

• DNSCHANGER

• FOBBER

• FOSNIW

• GAMEOVERZEUS

• GOZI

• KRAKEN

• LOCKY

• MATSNU

• MONEROMINER

• MUROFET

• MYDOOM

• NECURS

• NEWGOZ

• NYMAIM

• NYMAIM2

• PADCRYPT

• PITOU

• PIZD

• PROSLIKEFAN

• PUSHDO

• PYKSPA

• QADARS

• QAKBOT

• QSNATCH

• RAMDO

• RAMNIT

• RANBYUS

• RECONYC

• SHIOTOB

• SIMDA

• SISRON

• SUPPOBOX

• SYMMI

• TEMPEDREVE

• TINBA

• VAWTRAK

• ZLOADER

4.1.2. Sampling DGAs

Out of all acquired DGAs a subset is sampled for reimplementation, testing and analysis. All DGAs sam-

pled are reimplemented in Python as a child class of an DGA abstract class, which is further explained in

section 4.2.1. Implementing DGAs as a child class of a common abstract class increases the comparability

between all given samples. Since the basic building blocks and output functions of each DGA are already

implemented within the abstract class this does not count towards the code complexity of each DGA. To

further harmonize the internal code structures of the examined DGAs, all static external sources of input,

such as wordlists or top-level domains lists, are brought into the DGA child class itself. Finally, all DGAs

which are successfully implemented as a child class are equipped with input parameter defaults and the same

output variables. This creates the opportunity to implement a common validity testing mechanism with a

high grade of automation. This is described in detail in section 4.3.2.

4.2. Practical Implementation

This section describes the process of practical implementation. First an overview of the abstract class and

it’s properties and methods is given. Then the skeleton code for the child class is shown and the major

parts are elaborated upon. Finally, to ensure consistent code quality, the used coding standards enforcement

methods are described.

19

4. Approach

4.2.1. An Abstract DGA Class

The main goal of the implementation of an abstract DGA class is to provide a common interaction interface

for all analyzed DGAs. The abstract class also has certain functionalities built in to reduce the amount of

redundant code when reimplementing DGAs. Yet, the abstract class is kept as simple and as extendable as

possible to provide sufficient flexibility for most DGA implementations.

1 """This is the module for an abstract base class DGA."""

2 from abc import ABC, abstractmethod

3
4
5 class DGA(ABC):

6 """An abstract base class for a DGA."""

7
8 def __init__(self):

9 """

10 State and domain history attributes are initialized here.

11
12 Attributes

13 ----------

14 _state:

15 A dictionary to keep the current state of the running DGA

16 Field "generateddomains": this should be increased with every

domain generated

17 domainhistory:

18 A list keeping all domains generated during the lifetime of the

object.

19 """

20 self._state = dict()
21 self._state["generateddomains"] = 0

22 self.domainhistory = list()
23
24 def get_nextdomain(self) -> str:
25 """Return the next generated domain.

26
27 This is implemented to do state & stats "housekeeping".

28 It calls "generatedomain"

29 """

30 self.domainhistory.append(self.generate_domain())

31 self._state["generateddomains"] += 1

32 return self.domainhistory[-1]

33
34 @abstractmethod

35 def generate_domain(self) -> str:
36 """This method shall be implemented by the inheriting class."""

37 pass

Listing 4.1: The abstract base class for all DGAs analyzed in this document

20

4. Approach

Listing 4.1 shows the implementation of the abstract class in Python. This class inherits it’s properties

from the ABC abstract base class object to provide the functionality of defining abstract methods, which are

implemented via the respective child DGA classes.

The main building blocks of this class are as follows:

__init__(self) method: This method creates the structure for certain ”housekeeping” tasks during the

lifetime of an instantiated object. This includes providing a list object to save all generated domains

into, additionally a dictionary for variables such as the total number of domains generated is initial-

ized. This may be extend by the child class DGA implemented.

get_nextdomain(self) method: This is the main method to interact with the implemented DGA. Mod-

ules utilizing this class call this function to retrieve the next domain generated by the DGA. The

counter of created domains is automatically incremented and the generated domain is returned as a

string. This method wraps the actual implementation of the DGA.

generate_domain(self) method: Declared as an abstract method, it is the responsibility of the inher-

iting DGA class to provide an implementation. This method should return one new domain on each

call.

Not included in the design of the abstract class are various input parameters. Figure 4.1 shows that DGAs

are different in their parameter requirements, some just generate domains without any input, some require a

starting seed or a date, some require both. Again, it is in the responsibility of the inheriting DGA class to

enhance the __init__() method with all parameters necessary for correct operation. To simplify automated

testing it is advisable to equip all additional input parameters with default values. In case of a date it is

logical to use the current date, in case of a seed it makes sense to use a seed that is also observed in the wild,

if available.

4.2.2. A DGA Child Class

When a DGA is acquired from one of the sources named above it is rewritten to fit into the schema the

abstract DGA class provides. In some cases this means that most of the source code may be reused, in other

cases a lot of functionality has to be rewritten to fit to the abstract DGA class. Depending on the required

input parameters of the DGA a snippet of skeleton code is used to simplify implementation. An example of

this skeleton for a DGA requiring a seed and a date as input parameter is shown in listing 4.2. In this case a

date and a seed is required.

1 class DGAEmptySeedDate(DGA):

2 """Implementation of the "EmptySeedDate" DGA."""

3

21

4. Approach

None

10.0%

Seed

10.0%

Date

45.0%

SeedAndDate

35.0%

Figure 4.1.: Required Parameters over all analyzed DGAs: This pie chart shows the distribution of the

required input parameters displayed as percentage over all DGAs. If a date is accepted as a seed

the parameter it is counted as seed. Date parameters are only counted in the event of contextual

date dependence.

4 import datetime

5
6 def __init__(self, seed: any = "", date: datetime.datetime = datetime.

datetime.now()):

7 """Initializing the DGA.

8
9 This DGA is using a seed and a date as parameter.

10
11 Parameters

12 ----------

13 date : datetime

14 The date of which the domains are generated on, default value: now

()

15 seed : any

16 The seed provides the source of randomness, default value: ’’

17 """

18 super().__init__()
19 self._seed = seed

20 self._date = date

21
22 def generate_domain(self):

22

4. Approach

23 """Generates a new domain name."""

24 self._state["lastdomain"] = "Seed: " + self._seed + " Date: " + str(
self._date)

25 return(self._state["lastdomain"])

Listing 4.2: Sample of one variant of the skeleton code DGAs may be implemented as.

For completeness all variations of the skeleton code are provided in appendix B, listing B.1.

The main building blocks of this class are as follows:

__init__(self) method: This method first calls the __init__ method of the parent class via super().__init__().

Next the date and the seed for which the domains shall be generated on are copied into class wide

available variables. The default value for the date is already set to datetime.now() which represents

the current date and time. The seed in this example is an empty string, this should be replaced with a

value found in the wild at implementation time, if available.

generate_domain(self) method: Now the abstract method from the parent class is implemented by

this code. This is the main DGA method that will generate the domain and create or update the

state dictionary entry for lastdomain of the DGA class. Finally this dictionary entry containing the

respective next domain as string is returned to the get_nextdomain(self) method.

Adherence to this implementation guidelines yields a common interface for an automated validity testing of

reimplemented DGAs. By following this guideline research output is scaled simply by correctly reimple-

menting DGAs and running the standardized tests, described in section 4.3.2, with minimal administrative

overhead.

The list of DGAs, reimplemented as child class and ready for automated testing and analyzation, is shown

below.

• DGABANJORI

• DGACHINAD

• DGACOREBOT

• DGADIRCRYPT

• DGAFOBBERV1

• DGAFOBBERV2

• DGAMONERODOWNLOADER

• DGAMUROFETV1

• DGAMUROFETV2

• DGAMUROFETV3

• DGANECURS

• DGANEWGOZ

• DGAPADCRYPT22861

• DGAPADCRYPT22970

• DGAPROSLIKEFAN

• DGAPYKSPA

• DGAQADARS

• DGAQSNATCH

• DGARAMDO

• DGARANBYUS

23

4. Approach

4.2.3. Coding Standards Enforcement

Code written for this document adheres to the coding standard defined in the Python Enhancement Pro-

posal 8 [35]. This represents the standard style guide convention for writing Python code when working

with the standard libraries. Research proves [36] that enforcing coding guidelines in a project reduce error

proneness and increases legibility and consistent code quality.

The following source code parts adhere to the defined standards with one exception: logging of the error

code D401 is disabled. The mechanic throwing this error code is a contextual analysis of the docstring itself

in terms of language tone used.

• The abstract DGA class

• All DGA child classes

• All code written for analysis and evaluation of the DGAs

Additionally the Python docstrings inside the source code files adhere to the numpy [37] documentation

standard. Enforcement of these coding guidelines is achieved via flake8 [38], a library that wraps multiple

tools for static code analysis into one useable package.

4.3. DGA Analysis

This section handles the analysis of the implemented DGAs. It is basically divided in three parts, first the

methods and the analyzation workflow is demonstrated. Second each phase of the analyzation workflow is

presented in detail to further describe the used methods. The chapter concludes with an overview over the

generated metrics and their origin in code.

4.3.1. Analyzation Method

After a new DGA is reimplemented in Python as a child class of the defined DGA parent class, the analyza-

tion phase begins. First, the DGA is tested for functionality. This includes checking validity of the generated

domains and the variance of the DGAs output, i.e. the number of domains that may be generated within a

single day. Both metrics are recorded for use later in the analyzation phase.

If the DGA proves valid an abstract syntax tree is created and iterated over. Throughout this iteration the

occurrence of certain nodes of interest are recorded. The types of these nodes are the inputs for metrics like

complexity, parameter dependence or imported modules.

Modules provides an overview of the imported modules the DGAs make use of.

Parameters shows concepts on how deterministic randomness is seeded into the DGAs.

24

4. Approach

Implementation Specifics are language dependent structures that need to be considered for successful

reimplementation.

Complexity measures the number of general occurrences of well known structural elements such as loops

and branches.

Table C.1 provides an overview identifying each AST node class corresponding to their respective metric.

A detailed overview of which AST node metric is recorded for which purpose is given in section 4.3.6 to

section 4.3.9. The results are saved for the next phase of analyzation.

In the last phase the inputs of the two preceding phases are merged and data is generated to successfully

analyze, compare and evaluate the given DGAs. Multiple outputs, such as CSV files, are generated for

concrete comparison of DGAs or quantitative analysis.

4.3.2. Analyzation Workflow

This section provides an end to end view of how the analyzation phases work together, from the ingestion

of a DGA to the conversion of the processed data into usable metrics. First, a workflow of the three phases

of analysis is provided, then the recorded metrics during these phases are enumerated and described further.

4.3.3. Phase 1: Validity and Variance

Figure 4.2 provides a visual overview of this phase, further each step shown is explained in more detail

below.

Collect DGAs from sources

Instanciate first/next DGA

Analyse validity

Analyse varianceCreate data files

Figure 4.2.: Diagram of Phase 1 in the analysis workflow: This diagram shows the ”validity and variance”

phase of the analyzation workflow. The main steps are the collection and instantiation of DGAs

and the loop of collecting the data from each DGA. The phase finishes with the output of the

collected data.

Collect DGAs from sources All DGAs are implemented as classes within their respective module files.

These module files are enumerated via the Python glob module and then imported at runtime via the

25

4. Approach

importlib module.

Instantiate first/next DGA Since all DGAs are subclasses of the DGA abstract class, a Python list may

be created by executing the __subclasses__() method of the DGA abstract class. The resulting list

may then be iterated over and the next two steps executed for each DGA.

Analyze validity This step checks if the domains created by the DGA are in fact ”valid”. If a domain

can be found in the standardized DGA Archive [20] it can be considered as found in the wild and

thus valid. Checking a domain against this archive happens via sending the generated domain name

via a Secure Hypertext Transfer Protocol (HTTPS) Representational State Transfer (REST) request

to the authenticated DGA Archive webservice. If successful the response either contains the known

name of the DGA, or, if unsuccessful, an error message. The DGA parameters used are always

the implemented default parameters for the seed and the current days date. The process is repeated

arbitrarily often for each DGA, the exact number is defined in a global variable with the testing source

code. The results for all queried domains are saved in a local cache file for further lookups to reduce

strain on the webservice and expedite the process.

Analyze variance Each DGA that scores 100% valid domains in the previous step is analyzed for domain

variance. This test runs each instantiated DGA a 10.000 times and adds each resulting domain to a

Python set. At each power of 10 the length of this set is queried, since Python sets may not contain

duplicates the length of the set precisely give the amount of uniquely generated domains up to this

point.

Create data files As last step in the first phase the data files of the previous steps are created for further

use. The files are dumped Python dictionaries structured in JavaScript Object Notation (JSON).

4.3.4. Phase 2: Collection of Metrics via AST

In this phase the AST tree of each DGA implementation is collected and the metrics are extracted. Figure 4.3

provides a visual overview, further each step shown is explained in more detail below.

Collect DGAs from sources All DGAs are implemented as classes within their respective module files.

These module files are enumerated via the Python glob module and then imported at runtime via the

importlib module. This step is similar to the first step in phase 1.

Create AST from first/next DGA Again, a list is created by calling the __subclasses__() method in the

DGA abstract class object. The resulting list is iterated over an for each subclass DGA the correspond-

ing source file is found via the __module__ property. This source file is loaded and passed to the AST

parser via ast.parse(). The resulting AST is passed to the custom AST analyzer class executing the

26

4. Approach

Collect DGAs from sources

Create AST from first/next DGA

Check implementation formalities

Walk AST of class and collect metricsCreate data files

Figure 4.3.: Diagram of Phase 2 in the analysis workflow: This diagram shows the ”AST analyzation”

phase of the analyzation workflow. The main steps are the collection of the implemented DGAs

and the subsequent creation of an AST for each. Then the AST is iterated over and its nodes

examined. The phase finishes with the output of the collected data.

next two steps.

Check implementation formalities To analyze an AST of a DGA the implementation has to abide to

two basic guidelines. First, only one DGA class per module file is allowed. This makes templating

new DGAs more reliable and simplifies the automated instantiation executed in phase 1. Second, all

DGA module and class names must be unique to ensure coherent metrics without either double counts

or omitted classes. If both conditions are met the next step is started, if an error occurs a warning is

generated and the next DGA source file is examined.

Walk AST of class and collect metrics The actual inspection of the AST happens in two steps, first

the class of the DGA is looked up inside the AST by instantiating a custom ast.NodeVisitor class and

starting a visit_ClassDef() method. Once this custom AST visitor has arrived at the one and only class

node of the source file the metric dictionary is initialized and step 2 is initiated: all nodes below the

class node are iterated over via the ast.walk() method. This is the step where all metrics are collected

and written into a single structured dictionary. A detailed overview of which node metric is recorded

for which purpose is given in section 4.3.6 to section 4.3.9.

Create data files Same as during the first phase the data file of the previous step is created for further

use. The file is a dumped Python dictionary structured in JavaScript Object Notation - JSON.

4.3.5. Phase 3: Enrichment and Creation of Data Files

Figure 4.4 provides a visual overview of this phase, further each step shown is explained in more detail

below.

Ingest data files The files created in the previous phases are loaded into Python dictionary objects. If

27

4. Approach

Ingest data files

Combine metric data

Enrich metric data

Save data files

CSV CSV CSV

Figure 4.4.: Diagram of Phase 3 in the analysis workflow: This diagram shows the ”Enrichment and cre-

ation of data files” phase of the analyzation workflow. The main steps are the ingestions &

combination of the JSON data files from the previous phases and the enrichment of the data.

The phase finishes with the output of the final CSV data files for use in the evaluation.

the main data file does not exist a critical error is thrown and the phase is terminated. In case of

one or more missing supplemental datafiles from phase 1 a warning is logged into the central metric

dictionary, the ingest will continue nonetheless.

Combine metric data Metric data from all ingested files is combined into the central metric dictionary.

The properties generated in phase 1 which are added in this step are DomainsValidParcent and Do-

mainsUniqueDay. All missing properties from non-existent supplemental datafiles are further substi-

tuted with the value ”-1”.

Enrich metric data This step generates additional metrics from already collected data by combining or

summing up various datapoints. This includes but is not limited to the following metrics:

• global_import_counts - a dictionary containing the import count of each distinct module is cre-

ated by looping through all individual DGAs and their respective imports.

• PythonicComplexity - each DGA is assigned a value representing how often Python language

specific elements are used. This is further described in section 4.3.8.

• LanguageAgnosticComplexity - in contrast to the previous metric this shows the number of lan-

guage ”agnostic” structural elements. These are elements common in higher programming lan-

guages, for example loops, functions, operation, decisions or comparisons.

• global_dga_params - a dictionary counting the required input parameters and their respective

28

4. Approach

kind over all DGAs.

Save data files This final step creates various dataframes from the central metric dictionary. These

dataframes are then processed via the pandas [39] library, this enables the quick and efficient creation

of multiple well-formatted, sorted CSV files for various evaluation use cases. This data is directly

referenced in throughout this document, especially in chapter 5.

4.3.6. Metrics: Modules

In software development it is common practice to import functionality into an application that is already

implemented by a 3rd party. This practice saves time, effort and reduces redundancy. In case of standard

libraries it also brings the convenience of real world proven code into the own application. This is no

different for DGAs, therefore the following metrics about the analyzed DGAs are collected.

Imported Modules For each DGA the count and the module names of the individual imports are recorded.

The effort of reimplementation into another language is directly proportional dependent to this metric

- everything imported must also be imported in the language the DGA is reimplemented in.

Most Used Modules This metric provides an overview of the most imported modules counted over all

DGAs analyzed. With the help of this metric, modules especially important in DGA development,

may be identified.

1 if (isinstance(node, ast.Import)):

2 self.stats["dga"][dga_class]["ImportCount"] = self.stats["dga"][dga_class

].get("ImportCount", 0) + 1

3 for alias in node.names:

4 self.stats["dga"][dga_class]["Imports"].append(alias.name)

5
6 if (isinstance(node, ast.ImportFrom)):

7 self.stats["dga"][dga_class]["ImportCount"] = self.stats["dga"][dga_class

].get("ImportCount", 0) + 1

8 for alias in node.names:

9 self.stats["dga"][dga_class]["Imports"].append("from " + node.module +

" import " + alias.name)

Listing 4.3: Sample code for collecting module metrics via AST

4.3.7. Metrics: Parameters

Parameters of DGA can be found on two different occasions. One being external input parameters which

may be set when the DGA is instantiated, the other kind are internal parameters which may vary when

implementing subfamilies of the same DGA but from, for example, different malware campaigns.

29

4. Approach

External Parameters For each DGA the following external input parameters are enumerated: Seed,

Date. Both are extracted via AST analysis of the __init__() method of the class node. These two

parameters are defined via the DGA child class templates and thus may be extracted with good confi-

dence.

Hardcoded Parameters Discovering hard-coded parameters is non-trivial in code and heavily dependent

on the implementation. There are AST node types which hint at hard coded parameters for domain

creation - such as ast.Constant which may represent a string, depending on its contents. The classes

ast.Tuple, ast.List and ast.Set may also hold parameter values such as a list of top-level or second

level domains.

1 if isinstance(node, ast.FunctionDef) and (node.name == "__init__"):

2 for arg in node.args.args:

3 if (arg.arg == "seed"):

4 self.stats["dga"][dga_class]["ParamSeed"] = 1

5 if (arg.arg == "date"):

6 self.stats["dga"][dga_class]["ParamDate"] = 1

Listing 4.4: Sample code for collecting external parameters of an implemented DGA via AST

As described, obtaining specific AST nodes for hardcoded parameters depends on generic nodes, a code

sample is therefor omitted.

4.3.8. Metrics: Implementation Specifics

As described in section 4.1.1 most DGAs discovered for further analysis are implemented in Python. The

following metrics show how dependent a DGA is on specific types or constructs found in the Python pro-

gramming language. This section focuses on features not available out of the box in classic higher languages

such as C.

Data Structures This metric includes language constructs which are very convenient to use in Python,

but may be challenging in other languages. Python provides in-memory data structures with little to

no requirements on the users part when it comes to memory allocation or garbage collection. The

structures considered as such in this document are: ast.Tuple, ast.List, ast.Set and ast.Dict.

1 if isinstance(node, ast.List) or isinstance(node, ast.Tuple) or
isinstance(node, ast.Set) or isinstance(node, ast.Dict):

Listing 4.5: Sample code for collecting the occurrence of Python specific in-memory data structures
implemented DGA via AST

Formatting Elements Python provides a mechanic called literal string interpolation[40], more com-

monly known as f-strings. This allows the user to easily concatenate multiple variables into a single

30

4. Approach

output string while applying transformation such as case modification or formatting of non-string vari-

ables. This is a powerful tool, however very specific to Python, and may thus be considered non-trivial

to reimplement in another programming language.

1 if isinstance(node, ast.FormattedValue) or isinstance(node, ast.JoinedStr

):

Listing 4.6: Sample code for occurrences of literal string interpolation in an implemented DGA via
AST

4.3.9. Metrics: Complexity

The overall complexity is a quantitative analysis of the source code given. These metrics provide an

overview of the DGA in terms of code volume. Additionally the number of AST nodes is counted an

put into context.

Lines of code The metric counts the total lines of code used to implement the DGA. This is counted from

the first line of the implemented child class to the last line. All code or comments outside this area is

omited. In general lines of code provide an overview about the expected complexity, variations due

to coding style or implementation specifics are to be expected.

Average line complexity The average line complexity is a calculated value to put the previously mea-

sured line of code metric into context. The calculation is the amount of all AST nodes comprising the

DGA divided by the number of lines of code. This metric then shows how many AST nodes are used

on average in each line of code, calculation follows equation (1):

AverageLineComplexity =
NumberofNodes

LinesofCode
∗ 100 (1)

Elements

This section provides a quantitative overview about different elements spanning a single line of code. This

covers the existence of literals and the assignment of values to certain describes datatypes.

Nodes This metric counts each node in the AST tree of a DGA child class.

Constants In Python a node of class constant may represent different elements, for example: number,

string, byte, ellipsis or namedconstant. This metric helps to identify the number of constants, variables

or, more generally, atomic data types needed in other programming languages to reimplement an

analogue functionality.

Assignments There are three subtypes of assignments in Python.

31

4. Approach

• ast.Assign This node class represents a common assignment of a value to one or more targets.

The type is implied at runtime.

• ast.AnnAssign is detected when a node is assigned a certain class, such as ”int” or ”str”. Only

one target can be assigned a class at once.

• ast.AugAssign represents an augmented assignment. For example an integer ”a” may be in-

creased by 1 using this syntax: a += 1

Fundamental Control Structures

Loops In Python two different styles of loops are considered: the for loop and the while loop. Both add to

the count of this loop count metric.

Branches Decisions are implemented in different AST node classes. The common if statement is a ba-

sic control structure represented by a single AST node class. In Python the elif statement is not

represented by a unique AST node class but by nesting an if statement into the orelse clause of the

surrounding if statement. Further, Python allows for expressions such as a if b else c, this is also

considered a branch and is counted towards to final number of this metric.

Functions This metric counts all function definitions within the AST of the implemented DGA child class.

A higher function count may hint at a more complex source code implementation.

Lambda Functions Anonymous functions which fit inside a single AST node are known as lambda

functions in Python. While many programming languages support such anonymous functions, they

are still missing in the standard C programming language. Thus this metric is helpful in estimating

the reimplementation effort.

Operations

This section covers the four different types of operations which may occur with one or two operands. Fur-

ther, table 4.1 provides an overview of the actual operations counted towards each type.

Binary Operations Additions, Subtractions, Multiplications, Divisions, Bitwise operations, Modulus,

etc.

Boolean Operations AND, OR

Unary Operation Unary operations work on a single operand, prepending an integer with a - is commonly

observed.

Comparisons Comparators check for value equality, reference equality or value difference of the operands.

32

4. Approach

Operation Type Metric Operation

Binary (ast.BinOp) ast.Add, ast.Sub, ast.Mult, ast.Div, ast.FloorDiv, ast.Mod, ast.Pow,

ast.LShift, ast.RShift, ast.BitOr, ast.BitXor, ast.BitAnd, ast.MatMult

Boolean (ast.BoolOp) ast.And, ast.Or

Unary (ast.UnaryOp) ast.UAdd, ast.USub, ast.Not, ast.Invert

Comparison (ast.Compare) ast.Eq, ast.NotEq, ast.Lt, ast.LtE, ast.Gt, ast.GtE,

ast.Is, ast.IsNot, ast.In, ast.NotIn

Table 4.1.: Operation Types in Python: This table provides an overview of the four analyzed operation types

and the operations belonging to each type. The metrics generated for each type are the sum of

all occurrences of the individual operations.

33

5. Evaluation

This evaluation aims to create results from the metrics collected in section 4.3. As described in section 1.2

this document aims to identify DGAs or groups of DGAs which may be suitable candidates for reimple-

mentation in other programming languages while retaining an efficient administrative effort. Further, DGAs

shall be evaluated based on various key facts such as variance in domains generated or the use of mandatory

input parameters. These may serve as so called ”knock-out” criteria to enable or deny reimplementation

based on project use case.

To satisfy these goals the evaluation is done from three different perspectives, each covering unique aspects

in terms of complexion of the given DGAs and their analyzed properties.

• 3rd Party Dependency: DGAs are often implemented referencing third party libraries to ease im-

plementation and reduce coding effort. This however may have detrimental effects on the ability to

efficiently reimplement a DGA into another language.

• Proprietary or Complex Code Elements: As described in section 4.1.1 the most prevalent imple-

mentation language of available DGAs is Python. This perspective evaluates the implications on the

to-be-expected DGA complexity based on language specific metrics.

• General Classification: In contrast to the more code centered approach of the preceding two per-

spectives the focus here lies on the functional criteria of the analyzed DGAs. This perspective works

on the premise that when a DGA does not fulfill certain criteria it may be unsuitable for further use,

thus eliminating the need for reimplemenation altogether.

The following three sections describe each of the selected perspectives in more detail, providing tables

and visual aides to create visibility and insights into the evaluation process of the analyzed DGAs. Each

section starts with a general reasoning why evaluation of the respective metrics was chosen and then shows

outcomes and statistics generated from the analyzation metrics. They conclude with statements about the

results and implications of the data generated.

35

5. Evaluation

0 2 4 6 8 10 12 14 16

datetime
hashlib

time
string
struct

from ctypes import c_int
from md6 import md6hash

base64

16

9

3

2

2

1

1

1

Times the Module is Imported

Figure 5.1.: Most Imported Modules: Some DGAs use standard Python modules within their reference im-

plementation, this table shows which module are used most often to provide functionality.

5.1. 3rd Party Dependency

Dependency on third party libraries is common in the world of programming, especially in the Python

ecosystem where more than 200 modules [41] are readily available - within the standard libraries alone - to

provide many commonly used functionalities. To successfully port a Python script into another program-

ming language the used methods of the library also needs to be recreated in some way. This may happen

either via manual recreation of the functionality or via available libraries in the target language providing

similar functionality. Figure 5.1 shows the top most imported modules in all DGAs analyzed.

In contrast to observing the imported modules themselves, the analyzed DGAs are evaluated based on the

total number of imported modules in each. By following the established logic about reimplementation effort

being dependent on the number of 3rd party dependency, DGAs with a low module import count may be

more suitable for reimplementation with effective administrative effort. Table 5.1 shows how many modules

are imported by which DGA in ascending order.

Based on the combined metrics of fig. 5.1 and table 5.1 a third result may be observed. There is a number of

DGAs which only import modules from the pool of the top-most referenced modules. This may identify the

possibility of a so called ”quick-win”: when reimplementing the referenced modules of one of the DGAs in

this list the prerequisites for, in best case, many other DGAs may also already be fulfilled. Table 5.2 provides

this information. In this example all DGAs only importing from a common pool of top three modules are

shown in the table. It shall be noted that in case of an ex aequo placement in the top-three pool all possible

modules are contained in this table. This can be observed by cross referencing fig. 5.1.

Summary of findings and results of the 3rd Party Dependency perspective:

36

5. Evaluation

• The overview of the number of modules imported is an invaluable tool for further evaluation.

• DGAs with no imported modules are identified and evaluated as feasible candidates for reimplemen-

tation.

• DGAs which import only modules commonly also leveraged by other DGAs may create synergy

effects for the reimplementation of other DGAs.

5.2. Proprietary or Complex Code Elements

In this section the source code metrics of the analyzed DGAs are examined. Python is a scripting language

where many complex processes are abstracted away from the user, this enables rapid development of various

complex functionalities with relatively low effort. However, if code functionality written in such manner

is to be translated into another language an increased difficulty level when recreating said functionalities is

to be expected. Further, Python provides easily approachable data structures to work with, here the same

principle applies. If a DGA makes use of many different Python specific code elements, again a heightened

reimplementation effort is to be expected.

At first the code elements which are very typical to Python and contribute to the aforementioned difficulties

are collected as the number of ”Python Specific Elements”. This is done by applying formula (2) to all

metrics collected for each DGA.

PythonSpecificElements =ImportCount + LambdaFunctions + PythonFstring+ (2)

PythonStructureList + PythonStructureTuple + PythonStructureSet+

PythonStructureDict

The second step is to collect code and structure elements common in most higher, touring complete pro-

gramming languages. This number of of ”Language Agnostic Elements” is also collected from all metrics

of each DGA. After applying formula (3) the two numbers may be put into context for each DGA, providing

a hint whether there might be correlation between the two.

LanguageAgnosticElements =Functions + Loops + BinaryOperations+ (3)

BooleanOperations + UnaryOperations + Comparisons+

Decisions

37

5. Evaluation

It shall be noted that section 4.3 provides insights on how the various components of both formulas are

collected while in appendix C all code collected metrics are documented.

When these two numbers are combined for each DGA a plot may be drawn to visualize the correlation

between the ”Python Specific Elements” and the ”Language Agnostic Elements”. This is provided in fig. 5.2.

The linear regression line shows that as the values of the ”Python Specific Elements” increase the ”Language

Agnostic Elements” decrease slightly. To augment the data provided in fig. 5.2, table 5.3 shows the numbers

behind the figure. This hints at a rather mild correlation, as such it cannot be said with absolute certainty

that a higher count of ”Language Agnostic Elements” prevents a DGA from also leveraging code structures

specific to the Python language.

Thus, another set of source code specific metrics shall be evaluated to identify DGAs with reduced admin-

istrative reimplementation effort.

The next step is to quantitatively evaluate the complexity by looking at the number of lines of code for

each DGA in relation to the average complexity of each line of code within each DGA. The needed metric

”Average Line Complexity” is already well known and described in this document in section 4.3.9, the

metric ”Lines Of Code” is collected during phase 2 of the analyzation process in section 4.3.4. Thus no

further calculations need to be made to further evaluate these dimensions. Figure 5.3 shows the plot for each

analyzed DGA.

This time the very weak correlation between the two values is well expected, the complexity of each line of

code is in complete dependence on how the user chose to implement the required functionality. However,

a DGA with a very high number of lines of code and a high value of the average line complexity can be

classified as a rather complex and hard to reimplement DGA.

This is exactly the opposite of what we aim to identify, as such it can be conversely inferred that DGAs with

the following properties may fit our search better:

• a high number of lines of code and a low value of average line complexity

• a low number of lines of code and a high value of average line complexity

Additionally, the obvious case of a low number of lines of code and a low value of average line complexity

shall be considered as well.

Table 5.4 shows data of all three cases, sorted by lines of code. While the most useful DGAs cannot be

identified at the first glance it is made obvious that there is a high variance in the number of lines of code

and the value of average line complexity. This indicates that there is great potential of finding good DGA

candidates for reimplementation.

To yield the final results of the complexity and proprietarity evaluation the previous two metrics shall be

38

5. Evaluation

0 5 10
0

10

20

30

40

50

60

70

80

90

Python Specific Elements

L
an

gu
ag

e
A

gn
os

tic
E

le
m

en
ts

DGA
Linear regression: x = 2.45 · t+ 13.38

Figure 5.2.: Python Specific Elements in Relation to Language Agnostic Elements: This diagram visualizes

two different sources of complexity in relation to each other. The value of the ”Python Spe-

cific Elements” is the sum of all Python specific AST nodes found in the source code of the

displayed DGAs, the ”Language Agnostic Elements” is the result of the sum of common struc-

tures observed in most turing-complete programming languages such as functions, loops, unary

operations, etc.

39

5. Evaluation

20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170

500

600

700

800

Lines of Code

A
ve

ra
ge

L
in

e
C

om
pl

ex
ity

DGA
Linear regression: x = 0.14 · t+ 650.48

Figure 5.3.: Diagram Displaying Lines of Code in Relation to the Average Line Complexity: This diagram

puts two fairly similar DGA metrics in context. On the x-axis the ”Lines of Code” are displayed,

the y-axis represents the ”Average Line Complexity”. This is the fraction quotient ratio of all

AST nodes of a DGA divided by the lines of code, as further described in section 4.3.9. For

simple trend analysis the linear regression is calculated and represented in orange.

40

5. Evaluation

combined with the first metric - ”Python Specific Elements” - of this section. This intersection delivers a

group of DGAs which all exhibit the following property:

The value of ”Python Specific Elements” shall be in the lower third of all analyzed DGAs, with additionally

the ”Average Line Complexity” or the ”Lines Of Code” being in the lower third of all analyzed DGAs as

well.

This data is generated in section 4.3.5 and shown in table 5.5. The shown DGAs fulfill the aforemen-

tioned requirements and can thus be considered as well suited candidates for reimplementation in another

programming language.

Summary of findings and results of the Proprietary or Complex Code Elements perspective:

• A high number of ”Language Agnostic Elements” does not necessarily prevent a high count of

”Python Specific Elements”.

• To find non-complex DGAs high values of ”Lines of Code” and ”Average Line Complexity” are

mutually exclusive.

• The intersection of metrics as done in table 5.5 yields the most promising results.

5.3. General Classifications

Apart from evaluating dependence on external libraries as in section 5.1 or criteria within the source code

as seen in section 5.2 it is also important to take into account functional properties of the analyzed DGAs.

Depending on the planned future use of a DGA certain properties may be required while others make DGAs

infeasible for certain applications. For example, in repeatable training scenarios a time dependent DGA

may not be ideal to generate the desired learning effects. On the other hand, if a DGA is be used in machine

learning or detection scenarios the uniqueness of the generated domains should be within an expected range.

Based on the collected metric in section 4.3 a number of evaluations regarding the feasibility of DGAs can

be made.

As an example table 5.6 provides the number of unique domains generated by each DGA for each given day.

This also includes time independent DGAs which yield - unsurprisingly - the same domains on each given

day. In this example the maximum number of generated domains per day is capped at 10.000 (ten thousand)

to ensure execution of the ”Validity and Variance” analysis as described in section 4.3.2 in a timely manner.

Further, the parameter requirements of each DGA are described in table 5.7. It can be observed that some

DGAs require only a seed or a date, while others require both. Some DGAs might require no parameters

at all, while their usability in real world malware applications might be limited they pose a good start for

41

5. Evaluation

reimplementation or transpiling efforts. Usually these DGAs are the least complex one might encounter in

the wild.

Summary of findings and results of the General Classifications perspective:

• A project-specific functional requirement may block reimplementation of a DGA before code or de-

pendency analysis occurs.

• Domain uniqueness and parameter dependency vary throughout all analyzed DGAs.

• There is a small number of DGAs requiring no external parameters. While of limited use in the real

world they may provide a good starting point for future work.

42

5. Evaluation

DGA Import Count

DGABanjori 0

DGARamdo 0

DGAFobberV2 0

DGAFobberV1 0

DGANecurs 1

DGARanbyus 1

DGACorebot 1

DGADircrypt 1

DGAMonerodownloader 2

DGAMurofetV1 2

DGAMurofetV2 2

DGAPadcrypt22861 2

DGAPadcrypt22970 2

DGAProslikefan 2

DGAMurofetV3 2

DGAChinad 3

DGANewgoz 3

DGAQadars 3

DGAPykspa 4

DGAQsnatch 4

Table 5.1.: Table showing the number of imported modules by each DGA: This table shows a sorted overview

of the number of Python modules imported by each DGA implemented as a child class. This table

gives hints at the effort needed to reimplement a DGA in another language. However, if a DGA

imports only common modules often referenced by other DGAs, a low number of imports may

not increase the difficulty level of reimplementation.

43

5. Evaluation

DGA Imports

DGACorebot datetime

DGADircrypt datetime

DGAMonerodownloader datetime hashlib

DGAMurofetV1 datetime hashlib

DGAMurofetV2 datetime hashlib

DGAMurofetV3 datetime hashlib

DGANecurs datetime

DGAPadcrypt22861 datetime hashlib

DGAPadcrypt22970 datetime hashlib

DGARanbyus datetime

Table 5.2.: Table showing only DGAs which import the top 3 commonly imported modules: Of all analyzed

DGAs this table only shows the ones which import modules from the pool of the top 3 most

imported modules. If a module is imported by many DGAs it may be identified as an important

prerequisite to enable reimplementation of a DGA. Thus, making the functions of a common

module available in the target language eases the reimplementation of many DGAs.

44

5. Evaluation

DGA Python Specific Elements Language Agnostic Elements

DGABanjori 0 13

DGAFobberV1 0 16

DGAFobberV2 0 16

DGARamdo 0 16

DGACorebot 1 23

DGADircrypt 1 15

DGANecurs 2 28

DGAMonerodownloader 3 7

DGAProslikefan 4 18

DGAPadcrypt22970 4 10

DGAPadcrypt22861 4 10

DGANewgoz 4 30

DGAMurofetV3 5 29

DGAMurofetV1 5 30

DGAChinad 5 18

DGAMurofetV2 5 33

DGAQadars 6 19

DGARanbyus 9 43

DGAPykspa 11 84

DGAQsnatch 12 8

Table 5.3.: Python Specific Elements and Language Agnostic Elements: This table displays Python specific

elements and language agnostic elements for each analyzed DGA. A small pythonic complexity

may hint at a decreased reimplementation effort.

45

5. Evaluation

DGA Lines of Code Average Line Complexity

DGAFobberV1 28 629

DGAFobberV2 28 629

DGARamdo 30 557

DGABanjori 31 781

DGAPadcrypt22861 38 716

DGAPadcrypt22970 38 716

DGADircrypt 39 513

DGACorebot 43 793

DGAQsnatch 48 683

DGAProslikefan 48 698

DGAQadars 50 634

DGAChinad 53 675

DGAMonerodownloader 55 475

DGAMurofetV1 59 627

DGANecurs 59 698

DGAMurofetV3 61 618

DGAMurofetV2 62 634

DGARanbyus 70 763

DGANewgoz 82 645

DGAPykspa 164 676

Table 5.4.: Lines of Code and Average Line Complexity: This table shows each DGA and the metrics ”Lines

of Code” and ”Average Line Complexity” of it’s respective implemented child class. The com-

position of the metric ”Average Line Complexity” is further described in section 4.3.9

46

5. Evaluation

DGA Python Specific Elements Lines of Code Average Line Complexity

DGAFobberV1 0 28 629

DGAFobberV2 0 28 629

DGARamdo 0 30 557

DGABanjori 0 31 781

DGADircrypt 1 39 513

Table 5.5.: Promising DGAs for efficient reimplementation: This table only displays the lower third of all

DGAs in the ”Python Specific Elements” metric which are additionally in the lower third of

either the ”Lines of Code” or ”Average Line Complexity” metric.

47

5. Evaluation

DGA Unique Domains per 10000

DGAQsnatch 30

DGAChinad 256

DGAMurofetV3 1000

DGAMurofetV1 1020

DGAMurofetV2 1020

DGAProslikefan 9501

DGAQadars 10000

DGAPykspa 10000

DGAPadcrypt22970 10000

DGAPadcrypt22861 10000

DGANewgoz 10000

DGABanjori 10000

DGARamdo 10000

DGAMonerodownloader 10000

DGAFobberV2 10000

DGAFobberV1 10000

DGADircrypt 10000

DGACorebot 10000

DGANecurs 10000

DGARanbyus 10000

Table 5.6.: Unique domains generated per day per DGA: This table shows the number of unique domains

generated for each DGA per day. To effectively count the number of unique domains the

get_nextdomain() method of each implemented child class DGA is executed 10.000 times, sub-

sequently the number of distinct domains is determined.

48

5. Evaluation

DGA Date Parameter required? Seed Parameter required?

DGAFobberV1 no no

DGAFobberV2 no no

DGABanjori no yes

DGARamdo no yes

DGAChinad yes no

DGAMonerodownloader yes no

DGAMurofetV1 yes no

DGAMurofetV3 yes no

DGANewgoz yes no

DGAPadcrypt22861 yes no

DGAPadcrypt22970 yes no

DGAPykspa yes no

DGAQsnatch yes no

DGACorebot yes yes

DGADircrypt yes yes

DGAMurofetV2 yes yes

DGANecurs yes yes

DGAProslikefan yes yes

DGAQadars yes yes

DGARanbyus yes yes

Table 5.7.: Parameter requirements for each implemented DGA: This table displays the input parameters

required by each implemented DGA split by parameter type. A ”yes” in the respective ”Date

Parameter required?” or ”Seed Parameter required?” column indicates a mandatory parameter

which has to be supplied to the DGA at instantiation time.

49

6. Conclusion

Research shows that domain generation algorithms can be found readily available on the internet. They may

be found in public source code repositories, security blogs or are distributed as samples by the antimalware

industry. On the other hand, there are also projects by fellow researchers analyzing the functionality of

certain types of DGAs, some specialize in detection, some in generation of said domains.

The important part which could be achieved throughout this research was to bring those angles together.

Putting the different approaches not only into perspective, but also creating a common framework for the

analyzation of DGAs yields repeatable, useable results for every interested researcher.

The evaluation clearly shows, apart from creating an abstract class and unifying different DGAs into one

seamless framework, it was also accomplished to create a system of metrices to successfully evaluate and

classify DGAs for further use in the field.

6.1. Future Work

Both, the functional DGA testing suite, and the analyzation framework, are a sound platform for further

research. For instance, there are projects exploring language-to-language transpiling efforts to create source

code in some true compiler based language from Python scripts. Currently, these endeavors mostly only

support a subset of Python elements to be transpiled into another language native structures. An adoption of

this analyzation framework may aide the process of identifying DGAs already fit for automatic transpiling.

Another idea would be a plug-in system for malware research. Users may create a piece of harmless ”mal-

ware” for academic purposes and have the DGA effortless inserted via the already in-place abstract class.

Further, the to-be-inserted DGA could be automatically or randomly selected by using any number of met-

rics created during the phase of functional analysis.

The possibilities in this field are broad and creativity knows no bounds.

51

A. Appendix: Repositories of DGAs

Author URL # of DGAs License

pchaigno https://github.com/pchaigno/dga-collection 8 MIT

andrewaeva https://github.com/andrewaeva/DGA 8 unknown

baderj https://github.com/baderj/domain_generation_algorithms 44 GPL-2.0

Table A.1.: Public software repositories containing DGAs: This table shows the URLs to the public software

repositories used in this document. Additionally the number of DGAs and the license under

which the source code is published is provided.

53

B. Appendix: Source Code

B.1. DGA Child Class Skeleton

This listing shows the complete skeleton code classes DGAs may be implemented as.

1 """Module to showcase varios empty DGA classes.

2
3 They may be used to scaffold real world DGA implemenatations.

4 A real world DGA should only consist of one classe per module.

5
6 """

7
8 from dga_classes.dga_abstract_class import DGA

9
10
11 class DGAEmpty(DGA):

12 """Implementation of the "Empty" DGA."""

13
14 def __init__(self):

15 """Initializing the DGA.

16
17 This implementation does not require any parameters.

18
19 """

20 super().__init__()
21
22 def generate_domain(self):

23 """Generates a new domain name."""

24 self._state["lastdomain"] = "DGAEmpty"

25 return(self._state["lastdomain"])
26
27
28 class DGAEmptySeed(DGA):

29 """Implementation of the "EmptySeed" DGA."""

30
31 def __init__(self, seed: any = ""):

32 """Initializing the DGA.

33
34 This DGA is using a seed as parameter.

35

55

B. Appendix: Source Code

36 Parameters

37 ----------

38 seed : any

39 The seed provides the source of randomness, default value: ’’

40 """

41 super().__init__()
42 self._seed = seed

43
44 def generate_domain(self):

45 """Generates a new domain name."""

46 self._state["lastdomain"] = "Seed: " + self._seed

47 return(self._state["lastdomain"])
48
49
50 class DGAEmptyDate(DGA):

51 """Implementation of the "EmptyDate" DGA."""

52
53 import datetime

54
55 def __init__(self, date: datetime.datetime = datetime.datetime.now()):

56 """Initializing the DGA.

57
58 This DGA is using a date as parameter.

59
60 Parameters

61 ----------

62 date : datetime

63 The date of which the domains are generated on, default value: now

()

64 """

65 super().__init__()
66 self._date = date

67
68 def generate_domain(self):

69 """Generates a new domain name."""

70 self._state["lastdomain"] = " Date: " + str(self._date)
71 return(self._state["lastdomain"])
72
73
74 class DGAEmptySeedDate(DGA):

75 """Implementation of the "EmptySeedDate" DGA."""

76
77 import datetime

78
79 def __init__(self, seed: any = "", date: datetime.datetime = datetime.

datetime.now()):

80 """Initializing the DGA.

81
82 This DGA is using a seed and a date as parameter.

56

B. Appendix: Source Code

83
84 Parameters

85 ----------

86 date : datetime

87 The date of which the domains are generated on, default value: now

()

88 seed : any

89 The seed provides the source of randomness, default value: ’’

90 """

91 super().__init__()
92 self._seed = seed

93 self._date = date

94
95 def generate_domain(self):

96 """Generates a new domain name."""

97 self._state["lastdomain"] = "Seed: " + self._seed + " Date: " + str(
self._date)

98 return(self._state["lastdomain"])

Listing B.1: The base skeleton code DGAs may be implemented as.

B.2. DGA Analysis Phase 1: Validity and Variance

1 import requests

2 import csv

3 import time

4 import importlib

5 import glob

6 import json

7
8 from dga_classes.dga_abstract_class import DGA

9
10 txt_dga_not_matched = "!!!_DGA_not_found_!!!"

11
12 chkdm_api_url = "https://dgarchive.caad.fkie.fraunhofer.de/r/"

13 chkdm_cache_filename = "_dga_cache.csv"

14 chkdm_cache_dict = {}

15
16 stats_amount_domains_valid_test = 10

17 stats_amount_domains_valid_filename = "_dga_stats_valid_domains.json"

18 stats_amount_domains_unique_test = 10000

19 stats_amount_domains_unique_filename = "_dga_stats_unique_domains.json"

20 stats_score_dga = {}

21 stats_domains_dga = {}

22
23
24 def stats_increase_dga_score(dga: str):
25 stats_score_dga[dga] = (stats_score_dga.get(dga, 0) + 1)

57

B. Appendix: Source Code

26
27
28 def checkdomain_api(domain: str):
29 r = requests.get(chkdm_api_url + domain, auth=requests.auth.HTTPBasicAuth(

chkdm_api_user, chkdm_api_pass))

30 print("Cache miss, checking API, HTTP " + str(r.status_code))
31 time.sleep(1)

32 result = ""

33 if ((r.json().get(["hits"][0]))):

34 result = str(r.json()["hits"][0]["family"])
35 else:
36 result = txt_dga_not_matched

37 return result

38
39
40 def writedomain_cache(domain: str, family: str):
41 chkdm_cache_csv = csv.writer(open(chkdm_cache_filename, "a"), delimiter=",

")

42 chkdm_cache_csv.writerow([domain, family])

43 return
44
45
46 def checkdomain_full(domain: str):
47 if (domain in chkdm_cache_dict):

48 return chkdm_cache_dict[domain]

49 result = checkdomain_api(domain)

50 writedomain_cache(domain=domain, family=result)

51 return result

52
53
54 chkdm_cache_file = open(chkdm_cache_filename, "r")

55 chkdm_cache_csv = csv.reader(chkdm_cache_file, delimiter=",")

56 for row in chkdm_cache_csv:

57 chkdm_cache_dict[row[0]] = row[1]

58 chkdm_cache_file.close()

59
60 module = glob.glob("dga_classes/*.py")

61 module.sort()

62
63 for m in module:

64 importlib.import_module(m.replace("/", ".")[:-3])

65
66 dgalist = DGA.__subclasses__()

67
68 for currentdga in dgalist:

69 testdga = currentdga()

70 testdga_name = str(type(testdga).__name__)
71 if (not(testdga_name.startswith("DGAEmpty"))):
72 stats_score_dga[testdga_name] = 0

58

B. Appendix: Source Code

73 for _ in range(stats_amount_domains_valid_test):
74 cresult = checkdomain_full(testdga.get_nextdomain())

75 if (cresult != txt_dga_not_matched):

76 stats_increase_dga_score(testdga_name)

77
78 print("DGA reliabilty:")

79 for dgaentry in stats_score_dga:

80 print(dgaentry + ": " + str(stats_score_dga[dgaentry]) + "/" + str(
stats_amount_domains_valid_test))

81 stats_score_dga[dgaentry] = round((stats_score_dga[dgaentry] /

stats_amount_domains_valid_test) * 100)

82
83 for currentdga in dgalist:

84 testdga = currentdga()

85 testdga_name = str(type(testdga).__name__)
86 testdga_domains = set()
87 testdga_domain_count = 0

88 if (not(testdga_name.startswith("DGAEmpty"))):
89 if stats_score_dga[testdga_name] == 100:

90 for _ in range(stats_amount_domains_unique_test):
91 testdga_domains.add(testdga.get_nextdomain())

92 stats_domains_dga[testdga_name] = len(testdga_domains)
93
94 print("DGA unique domains generated:")

95 for dgaentry in stats_domains_dga:

96 print(dgaentry + ": " + str(stats_domains_dga[dgaentry]) + "/" + str(
stats_amount_domains_unique_test))

97
98 print("Writing results of integrity and unique domain tests to: " +

stats_amount_domains_valid_filename + " and " +

stats_amount_domains_unique_filename)

99 with open(stats_amount_domains_unique_filename, "w") as outfile:

100 json.dump(stats_domains_dga, outfile)

101
102 with open(stats_amount_domains_valid_filename, "w") as outfile:

103 json.dump(stats_score_dga, outfile)

Listing B.2: Python code for phase 1 of the analysis workflow

Notice: For security purposes the credentials to authenticate against the webservice referenced in this code

are omitted.

B.3. DGA Analysis Phase 2: Collection of metrics via AST

1 """

2 This python file contains a collection of tools to perform static code

analyzation for multiple DGAs.

3
4 All subclasses of the abstract DGA class are enumerated and analyzed, the

59

B. Appendix: Source Code

results are saved into a JSON file to be processed further.

5 """

6
7 import ast

8 import json

9 import sys

10 import importlib

11 import glob

12
13 from dga_classes.dga_abstract_class import DGA

14
15
16 class DGAAnalyzer(ast.NodeVisitor):

17 """The DGAAnalyzer class provides methods to loop through an AST

representation of sourcecode."""

18
19 def __init__(self, statsdict):

20 """Initializing the Analyzer.

21
22 Parameters

23 ----------

24 statsdict : dict

25 The dictionary object into which the data will be saved.

26 """

27 self.stats = statsdict

28 self.classnr = 0

29
30 def visit_ClassDef(self, node: ast.AST):

31 """This visitor method stops at class AST nodes and starts the

analyzation of each.

32
33 If it encounters multiple classes within a single file or multiple

definitions of the same class in different files an alert is

logged.

34 """

35 self.classnr += 1

36 if (self.classnr > 1):

37 self.stats["alerts"].append("Ignored " + node.name + ": multiple

classes in same file detected")

38 return
39 if (node.name in self.stats["dga"]):

40 self.stats["alerts"].append("Ignored " + node.name + ": class

already analyzed")

41 return
42 self.stats["dga"][node.name] = {}

43 self.stats["dga"][node.name]["LinesOfCode"] = (node.end_lineno - node.

lineno) + 1

44 self.stats["dga"][node.name]["AvgLineComplexity"] = 0

45 self.stats["dga"][node.name]["SyntaxNodes"] = 0

60

B. Appendix: Source Code

46 self.stats["dga"][node.name]["Imports"] = []

47 self.stats["dga"][node.name]["ImportCount"] = 0

48 self.stats["dga"][node.name]["Functions"] = 0

49 self.stats["dga"][node.name]["LambdaFunctions"] = 0

50 self.stats["dga"][node.name]["Constants"] = 0

51 self.stats["dga"][node.name]["Assignments"] = 0

52 self.stats["dga"][node.name]["ParamSeed"] = 0

53 self.stats["dga"][node.name]["ParamDate"] = 0

54 self.stats["dga"][node.name]["ParamCount"] = 0

55 self.stats["dga"][node.name]["PythonFstring"] = 0

56 self.stats["dga"][node.name]["PythonStructures"] = 0

57 self.stats["dga"][node.name]["PythonStructureList"] = 0

58 self.stats["dga"][node.name]["PythonStructureTuple"] = 0

59 self.stats["dga"][node.name]["PythonStructureSet"] = 0

60 self.stats["dga"][node.name]["PythonStructureDict"] = 0

61 self.stats["dga"][node.name]["Loops"] = 0

62 self.stats["dga"][node.name]["Decisions"] = 0

63 self.stats["dga"][node.name]["BinaryOperations"] = 0

64 self.stats["dga"][node.name]["BinaryOperationModulo"] = 0

65 self.stats["dga"][node.name]["BooleanOperations"] = 0

66 self.stats["dga"][node.name]["UnaryOperations"] = 0

67 self.stats["dga"][node.name]["Comparisons"] = 0

68 self.analyze_dgaclass(node, node.name)

69 self.stats["dga"][node.name]["ParamCount"] = self.stats["dga"][node.

name]["ParamSeed"] + self.stats["dga"][node.name]["ParamDate"]

70 self.stats["dga"][node.name]["AvgLineComplexity"] = round((int(self.
stats["dga"][node.name]["SyntaxNodes"]) / int(self.stats["dga"][
node.name]["LinesOfCode"])) * 100)

71
72 def analyze_dgaclass(self, tree, dga_class: str):
73 """Given a node within an AST tree this method walks through the

remaining AST tree.

74
75 Each node is analyzed and the results are added to the stats

dictionary.

76 """

77 for node in ast.walk(tree):

78 self.stats["dga"][dga_class]["SyntaxNodes"] = self.stats["dga"][

dga_class].get("SyntaxNodes", 0) + 1

79
80 if (isinstance(node, ast.Import)):

81 self.stats["dga"][dga_class]["ImportCount"] = self.stats["dga"

][dga_class].get("ImportCount", 0) + 1

82 for alias in node.names:

83 self.stats["dga"][dga_class]["Imports"].append(alias.name)

84
85 if (isinstance(node, ast.ImportFrom)):

86 self.stats["dga"][dga_class]["ImportCount"] = self.stats["dga"

][dga_class].get("ImportCount", 0) + 1

61

B. Appendix: Source Code

87 for alias in node.names:

88 self.stats["dga"][dga_class]["Imports"].append("from " +

node.module + " import " + alias.name)

89
90 if isinstance(node, ast.FunctionDef):

91 self.stats["dga"][dga_class]["Functions"] = self.stats["dga"][

dga_class].get("Functions", 0) + 1

92
93 if isinstance(node, ast.Lambda):

94 self.stats["dga"][dga_class]["LambdaFunctions"] = self.stats["

dga"][dga_class].get("LambdaFunctions", 0) + 1

95
96 if isinstance(node, ast.Constant):

97 self.stats["dga"][dga_class]["Constants"] = self.stats["dga"][

dga_class].get("Constants", 0) + 1

98
99 if isinstance(node, ast.Assign) or isinstance(node, ast.AugAssign)

or isinstance(node, ast.AnnAssign):

100 self.stats["dga"][dga_class]["Assignments"] = self.stats["dga"

][dga_class].get("Assignments", 0) + 1

101
102 if isinstance(node, ast.FunctionDef) and (node.name == "__init__")

:

103 for arg in node.args.args:

104 if (arg.arg == "seed"):

105 self.stats["dga"][dga_class]["ParamSeed"] = 1

106 if (arg.arg == "date"):

107 self.stats["dga"][dga_class]["ParamDate"] = 1

108
109 if isinstance(node, ast.FormattedValue) or isinstance(node, ast.

JoinedStr):

110 self.stats["dga"][dga_class]["PythonFstring"] = self.stats["

dga"][dga_class].get("PythonFstring", 0) + 1

111
112 if isinstance(node, ast.List) or isinstance(node, ast.Tuple) or

isinstance(node, ast.Set) or isinstance(node, ast.Dict):

113 self.stats["dga"][dga_class]["PythonStructures"] = self.stats[

"dga"][dga_class].get("PythonStructures", 0) + 1

114
115 if isinstance(node, ast.List):

116 self.stats["dga"][dga_class]["PythonStructureList"] = self.

stats["dga"][dga_class].get("PythonStructureList", 0) + 1

117
118 if isinstance(node, ast.Tuple):

119 self.stats["dga"][dga_class]["PythonStructureTuple"] = self.

stats["dga"][dga_class].get("PythonStructureTuple", 0) + 1

120
121 if isinstance(node, ast.Set):

122 self.stats["dga"][dga_class]["PythonStructureSet"] = self.

62

B. Appendix: Source Code

stats["dga"][dga_class].get("PythonStructureSet", 0) + 1

123
124 if isinstance(node, ast.Dict):

125 self.stats["dga"][dga_class]["PythonStructureDict"] = self.

stats["dga"][dga_class].get("PythonStructureDict", 0) + 1

126
127 if isinstance(node, ast.For) or isinstance(node, ast.While):

128 self.stats["dga"][dga_class]["Loops"] = self.stats["dga"][

dga_class].get("Loops", 0) + 1

129
130 if isinstance(node, ast.If) or isinstance(node, ast.IfExp):

131 self.stats["dga"][dga_class]["Decisions"] = self.stats["dga"][

dga_class].get("Decisions", 0) + 1

132
133 if isinstance(node, ast.BinOp):

134 self.stats["dga"][dga_class]["BinaryOperations"] = self.stats[

"dga"][dga_class].get("BinaryOperations", 0) + 1

135 if (isinstance(node.op, ast.Mod)):

136 self.stats["dga"][dga_class]["BinaryOperationModulo"] =

self.stats["dga"][dga_class].get("

BinaryOperationModulo", 0) + 1

137
138 if isinstance(node, ast.BoolOp):

139 self.stats["dga"][dga_class]["BooleanOperations"] = self.stats

["dga"][dga_class].get("BooleanOperations", 0) + 1

140
141 if isinstance(node, ast.UnaryOp):

142 self.stats["dga"][dga_class]["UnaryOperations"] = self.stats["

dga"][dga_class].get("UnaryOperations", 0) + 1

143
144 if isinstance(node, ast.Compare):

145 self.stats["dga"][dga_class]["Comparisons"] = self.stats["dga"

][dga_class].get("Comparisons", 0) + 1

146
147
148 def save_json_stats(dgadict, jsonfile):

149 """."""

150 with open(jsonfile, ’w’) as outfile:

151 json.dump(dgadict, outfile)

152
153
154 def main():

155 if sys.version_info < (3, 8, 10):

156 print("Please run ver. 3.8.10 or above")

157 return
158
159 dga_all_stats = {}

160 dga_all_stats["dga"] = {}

161 dga_all_stats_file = "_dga_stats_ast.json"

63

B. Appendix: Source Code

162
163 module = glob.glob("dga_classes/DGA*.py")

164 module.sort()

165
166 for m in module:

167 importlib.import_module(m.replace("/", ".")[:-3])

168
169 dgalist = DGA.__subclasses__()

170
171 for currentdga in dgalist:

172 dga_file = str(currentdga.__module__.replace(".", "/") + ".py")

173 with open(dga_file, "r") as source:

174 tree = ast.parse(source.read())

175 analyzer = DGAAnalyzer(dga_all_stats)

176 analyzer.visit(tree)

177
178 save_json_stats(dga_all_stats, dga_all_stats_file)

179
180
181 if (__name__ == "__main__"):

182 main()

Listing B.3: Python code for phase 2 of the analysis workflow

B.4. DGA Analysis Phase 3: Enrichment and creation of data files

1 import json

2 import csv

3 import pandas as pd

4
5
6 def enrich_stats(statsdict, uniquedomainsfile: str, validdomainsfile: str):
7 """This method expands the collected stats into different dimensions.

8
9 Data from the DGA integrity testing is also imported.

10 """

11 dga_unique_domains = {}

12 dga_valid_domains = {}

13 statsdict["global_dga_params"] = {}

14 statsdict["global_dga_params"]["None"] = 0

15 statsdict["global_dga_params"]["Seed"] = 0

16 statsdict["global_dga_params"]["Date"] = 0

17 statsdict["global_dga_params"]["SeedAndDate"] = 0

18 statsdict["global_counts"] = {}

19 statsdict["global_counts"]["DGAs"] = 0

20
21 try:
22 with open(uniquedomainsfile) as infile:

23 dga_unique_domains = json.load(infile)

64

B. Appendix: Source Code

24 except FileNotFoundError:

25 statsdict["alerts"].append("WARN: Unique domains JSON file " +

uniquedomainsfile + " not found. You may want to run the domain

integrity test first.")

26
27 try:
28 with open(validdomainsfile) as infile:

29 dga_valid_domains = json.load(infile)

30 except FileNotFoundError:

31 statsdict["alerts"].append("WARN: Valid domains JSON file " +

validdomainsfile + " not found. You may want to run the domain

integrity test first.")

32
33 for x in statsdict["dga"]:

34 for imp in statsdict["dga"][x]["Imports"]:

35 statsdict["global_import_counts"][imp] = statsdict["

global_import_counts"].get(imp, 0) + 1

36 statsdict["dga"][x]["DomainsValidPercent"] = dga_valid_domains.get(x,

-1)

37 statsdict["dga"][x]["DomainsUniqueDay"] = dga_unique_domains.get(x,

-1)

38 statsdict["dga"][x]["PythonicComplexity"] = statsdict["dga"][x]["

ImportCount"] + statsdict["dga"][x]["LambdaFunctions"] + statsdict

["dga"][x]["PythonFstring"] + statsdict["dga"][x]["

PythonStructures"]

39 statsdict["dga"][x]["LanguageAgnosticComplexity"] = statsdict["dga"][x

]["Functions"] + statsdict["dga"][x]["Loops"] + statsdict["dga"][x

]["BinaryOperations"] + statsdict["dga"][x]["BooleanOperations"] +

statsdict["dga"][x]["UnaryOperations"] + statsdict["dga"][x]["

Comparisons"] + statsdict["dga"][x]["Decisions"]

40 statsdict["dga"][x]["TotalComplexity"] = statsdict["dga"][x]["

PythonicComplexity"] + statsdict["dga"][x]["

LanguageAgnosticComplexity"]

41 if ((statsdict["dga"][x]["ParamSeed"] == 0) and (statsdict["dga"][x]["

ParamDate"] == 0)):

42 statsdict["global_dga_params"]["None"] += 1

43 if ((statsdict["dga"][x]["ParamSeed"] == 1) and (statsdict["dga"][x]["

ParamDate"] == 0)):

44 statsdict["global_dga_params"]["Seed"] += 1

45 if ((statsdict["dga"][x]["ParamSeed"] == 0) and (statsdict["dga"][x]["

ParamDate"] == 1)):

46 statsdict["global_dga_params"]["Date"] += 1

47 if ((statsdict["dga"][x]["ParamSeed"] == 1) and (statsdict["dga"][x]["

ParamDate"] == 1)):

48 statsdict["global_dga_params"]["SeedAndDate"] += 1

49 statsdict["global_counts"]["DGAs"] += 1

50 return
51
52

65

B. Appendix: Source Code

53 def save_stats(dgadict, out_files: dict):
54 """This method creates CSV files based on the statistics collected."""

55 with open(out_files["csv_common_stats_file"], "w") as csvfile:

56 first = 1

57 for data in dgadict[’dga’]:

58 temp_data = dgadict[’dga’][data]

59 temp_data["DGA"] = data

60 if (first == 1):

61 csvcolumns = temp_data.keys()

62 writer = csv.DictWriter(csvfile, fieldnames=csvcolumns)

63 writer.writeheader()

64 first = 0

65 writer.writerow(temp_data)

66
67 # APPROACH: PARAMETER TYPE STATISTICS --- START

68 df_paramstats = pd.DataFrame(list(dgadict["global_dga_params"].items()),
columns=[’ParameterType’, ’Count’])

69 df_paramstats[’CountPercent’] = round(((df_paramstats[’Count’] /

df_paramstats[’Count’].sum()) * 100), 1)

70 df_paramstats.to_csv(out_files["csv_param_counts_file"], index=False)

71 # APPROACH: PARAMETER TYPE STATISTICS --- END

72
73 # EVALUATION: MOST USED MODULES --- START

74 with open(out_files["csv_imports_file"], "w") as csvfile:

75 sorted_dgadict = sorted(dgadict["global_import_counts"].items(), key=

lambda x: x[1], reverse=True)

76 header = [’imported’, ’module’]

77 writer = csv.writer(csvfile)

78 writer.writerow(header)

79 for imp in sorted_dgadict:

80 san_import = str(imp[0]).replace("_", "_")

81 # san_import = san_import.replace(" ", "\ ")

82 data = [imp[1], san_import]

83 writer.writerow(data)

84 # EVALUATION: MOST USED MODULES --- END

85
86 # EVALUATION: DGAS WITH MOST IMPORTED MODULES --- START

87 df = pd.read_csv(out_files["csv_common_stats_file"])

88 header = ["DGA", "ImportCount"]

89 df = df.sort_values(by=["ImportCount"])

90 df.to_csv(out_files["csv_dga_import_count_file"], columns=header, index=

False)

91 # EVALUATION: DGAS WITH MOST IMPORTED MODULES --- END

92
93 # EVALUATION: DGAS WITH TOP 3 COMMON IMPORTS --- START

94 df_top_imports = pd.read_csv(out_files["csv_imports_file"])

95 header = ["DGA", "imports"]

96
97 df_top_imports = df_top_imports.nlargest(3, ’imported’, keep="all")

66

B. Appendix: Source Code

98 list_top_imports = df_top_imports["module"].tolist()

99
100 df_dgas_top_imports = pd.DataFrame(columns=header)

101
102 for data in dgadict[’dga’]:

103 c_dga = data

104 c_imports = str()
105 c_imports_only_top3 = 1

106 for c_imp in dgadict[’dga’][data]["Imports"]:

107 if c_imp in list_top_imports:

108 c_imports = c_imports + c_imp + " "

109 else:
110 c_imports_only_top3 = 0

111 if (c_imports_only_top3 and len(c_imports) > 0):

112 df_dgas_top_imports = df_dgas_top_imports.append({"DGA": c_dga, "

imports": c_imports}, ignore_index=True)

113
114 df_dgas_top_imports.to_csv(out_files["csv_dga_top_imports_file"], columns=

header, index=False)

115 # EVALUATION: DGAS WITH TOP 3 COMMON IMPORTS --- END

116
117 # EVALUATION: DGAS WITH LOW PYTHONIC COMPLEXITY --- START

118 df = pd.read_csv(out_files["csv_common_stats_file"])

119 header = ["DGA", "PythonicComplexity", "LanguageAgnosticComplexity"]

120
121 df = df.sort_values(by=["PythonicComplexity"])

122 df.to_csv(out_files["csv_pycomp_lacomp_file"], columns=header, index=False

)

123 # EVALUATION: DGAS WITH LOW PYTHONIC COMPLEXITY --- END

124
125 # EVALUATION: DGAS WITH LOW LOC OR LOW AVERAGE COMPLEXITY --- START

126 df = pd.read_csv(out_files["csv_common_stats_file"])

127 header = ["DGA", "LinesOfCode", "AvgLineComplexity"]

128
129 df = df.sort_values(by=["LinesOfCode"])

130 df.to_csv(out_files["csv_loc_avgcomp_file"], columns=header, index=False)

131 # EVALUATION: DGAS WITH LOW LOC OR LOW AVERAGE COMPLEXITY --- END

132
133 # EVALUATION: DGAS WITH (LOW LOC OR LOW AVERAGE COMPLEXITY) AND LOW

PYTHONIC COMPLEXITY --- START

134 df = pd.read_csv(out_files["csv_common_stats_file"])

135 header = ["DGA", "LinesOfCode", "AvgLineComplexity", "PythonicComplexity"]

136
137 amount_divisor = 3

138
139 df_lowest_loc = df.nsmallest(round(len(df.index) / amount_divisor), "

LinesOfCode", keep="all")

140 df_lowest_alc = df.nsmallest(round(len(df.index) / amount_divisor), "

AvgLineComplexity", keep="all")

67

B. Appendix: Source Code

141 df_lowest_pyc = df.nsmallest(round(len(df.index) / amount_divisor), "

PythonicComplexity", keep="all")

142 df_lowest_alc_or_loc = pd.concat([df_lowest_loc, df_lowest_alc]).

drop_duplicates().reset_index(drop=True)

143 df_lowest_alc_or_loc_and_pyc = pd.merge(df_lowest_alc_or_loc,

df_lowest_pyc, how="inner")

144 df_lowest_alc_or_loc_and_pyc = df_lowest_alc_or_loc_and_pyc.sort_values(by

=["PythonicComplexity"])

145 df_lowest_alc_or_loc_and_pyc.to_csv(out_files["csv_loc_alc_pyc_file"],

columns=header, index=False)

146 # EVALUATION: DGAS WITH (LOW LOC OR LOW AVERAGE COMPLEXITY) AND LOW

PYTHONIC COMPLEXITY --- END

147
148 # EVALUATION: UNIQUE DOMAINS PER DGA PER DAY --- START

149 df = pd.read_csv(out_files["csv_common_stats_file"])

150 header = ["DGA", "DomainsUniqueDay"]

151
152 df = df.sort_values(by=["DomainsUniqueDay"])

153 df.to_csv(out_files["csv_unqiue_domains_file"], columns=header, index=

False)

154 # EVALUATION: UNIQUE DOMAINS PER DGA PER DAY --- END

155
156 # EVALUATION: PARAMETER REQUIREMENTS PER DGA --- START

157 df = pd.read_csv(out_files["csv_common_stats_file"])

158 header = ["DGA", "ParamDate", "ParamSeed"]

159
160 df = df.replace(to_replace=1, value="yes")

161 df = df.replace(to_replace=0, value="no")

162
163 df = df.sort_values(by=["ParamDate", "ParamSeed"])

164 df.to_csv(out_files["csv_param_details_file"], columns=header, index=False

)

165 # EVALUATION: PARAMETER REQUIREMENTS PER DGA --- END

166
167
168 def main():

169
170 dga_all_stats = {}

171
172 dga_all_stats_file = "_dga_stats_ast.json"

173 dga_unique_domains_stats_file = "_dga_stats_unique_domains.json"

174 dga_valid_domains_stats_file = "_dga_stats_valid_domains.json"

175
176 out_files = {

177 "csv_common_stats_file": "dga_stats_common.csv",

178 "csv_imports_file": "dga_stats_imports.csv",

179 "csv_dga_import_count_file": "dga_stats_dga_import_count.csv",

180 "csv_dga_top_imports_file": "dga_stats_dga_top_imports.csv",

181 "csv_loc_avgcomp_file": "dga_stats_loc_avgcomp.csv",

68

B. Appendix: Source Code

182 "csv_pycomp_lacomp_file": "dga_stats_pycomp_lacomp.csv",

183 "csv_loc_alc_pyc_file": "dga_stats_loc_alc_pyc.csv",

184 "csv_param_counts_file": "dga_stats_param_counts.csv",

185 "csv_param_details_file": "dga_stats_param_details.csv",

186 "csv_unqiue_domains_file": "dga_stats_unique_domains.csv"

187 }

188
189 try:
190 with open(dga_all_stats_file) as infile:

191 dga_all_stats = json.load(infile)

192 except FileNotFoundError:

193 print("CRIT: No DGA statistic file found, please run AST analysis

first.")

194 exit()

195
196 print(dga_all_stats)
197
198 dga_all_stats["global_import_counts"] = {}

199 dga_all_stats["alerts"] = []

200
201 enrich_stats(dga_all_stats, dga_unique_domains_stats_file,

dga_valid_domains_stats_file)

202 save_stats(dga_all_stats, out_files)

203
204
205 if (__name__ == "__main__"):

206 main()

Listing B.4: Python code for phase 3 of the analysis workflow

69

C. Appendix: Metrics Collected via AST

Phase 2 Metric AST Node Class

ImportCount & Imports ast.Import, ast.ImportFrom

Functions ast.FunctionDef

LambdaFunctions ast.Lambda

Constants ast.Constant

Assignments ast.Assign, ast.AugAssign, ast.AnnAssign

PythonFstring ast.FormattedValue, ast.JoinedStr

PythonStructures ast.List, ast.Tuple, ast.Set, ast.Dict

PythonStructureList ast.List

PythonStructureTuple ast.Tuple

PythonStructureSet ast.Set

PythonStructureDict ast.Dict

Loops ast.For, ast.While

Decisions ast.If, ast.IfExp

BinaryOperations ast.BinOp

BinaryOperationModulo ast.Mod

BooleanOperations ast.BoolOp

UnaryOperations ast.UnaryOp

Comparisons ast.Compare

BinaryOperationModulo ast.Mod

Table C.1.: Metrics collected via AST: This table provides an overview of the metrics collected in Phase 2

and which corresponding AST node classes are summed up to result in the final value of their

respective metric.

71

List of Figures

1.1 Malware, a lucrative business . 1

4.1 Required Parameters over all analyzed DGAs . 22

4.2 Diagram of Phase 1 in the analysis workflow . 25

4.3 Diagram of Phase 2 in the analysis workflow . 27

4.4 Diagram of Phase 3 in the analysis workflow . 28

5.1 Most Imported Modules . 36

5.2 Python Specific Elements in Relation to Language Agnostic Elements 39

5.3 Lines of Code in Relation to the Average Line Complexity 40

72

List of Tables

2.1 Samples of full qualified domain names . 5

2.2 Examples of generated domains and their respective inputs 9

4.1 Operation Types in Python . 33

5.1 Table showing the number of imported modules by each DGA 43

5.2 Table showing only DGAs which import the top 3 commonly imported modules 44

5.3 Python Specific Elements and Language Agnostic Elements 45

5.4 Lines of Code and Average Line Complexity . 46

5.5 Promising DGAs for efficient reimplementation . 47

5.6 Unique domains generated per day per DGA . 48

5.7 Parameter requirements for each implemented DGA . 49

A.1 Public software repositories containing DGAs . 53

C.1 Metrics collected via AST . 71

73

Listings

2.1 Querying a designated DNS resolver to receive the IP address of an FQDN available on the

public internet. 6

2.2 Querying a designated DNS resolver to receive the IP address of a non-existent FQDN. . . . 6

2.3 A small Python program generating and outputting an AST of a given piece of code. 10

2.4 The output of an AST generated by the dump() method . 10

4.1 The abstract base class for all DGAs analyzed in this document 20

4.2 Sample of one variant of the skeleton code DGAs may be implemented as. 21

4.3 Sample code for collecting module metrics via AST . 29

4.4 Sample code for collecting external parameters of an implemented DGA via AST 30

4.5 Sample code for collecting the occurrence of Python specific in-memory data structures

implemented DGA via AST . 30

4.6 Sample code for occurrences of literal string interpolation in an implemented DGA via AST 31

B.1 The base skeleton code DGAs may be implemented as. 55

B.2 Python code for phase 1 of the analysis workflow . 57

B.3 Python code for phase 2 of the analysis workflow . 59

B.4 Python code for phase 3 of the analysis workflow . 64

75

Listings

76

Glossary

AES Advanced Encryption Standard

API Application Programming Interface

AST Abstract Syntax Tree

C2 Command and Control

CSV Comma Separated Value

DDoS Distributed Denial of Service

DES Data Encryption Standard

DGA Domain Generation Algorithm

DNS Domain Name System

FQDN Full Qualified Domain Name

GCC GNU Compiler Collection

HTTP Hypertext Transfer Protocol

HTTPS Secure Hypertext Transfer Protocol

IP Internet Protocol

JSON JavaScript Object Notation

77

Glossary

Malware Malicious computer software

OSS Open Source Software

REST Representational State Transfer

78

Bibliography

[1] • global new malware volume 2020 | statista, https://www-statista-com.ezproxy.

fhstp.ac.at:2443/statistics/680953/global-malware-volume/, (Accessed on

02/14/2022).

[2] Brett Stone-Gross, Marco Cova, Lorenzo Cavallaro, Bob Gilbert, Martin Szydlowski, Richard Kem-

merer, Christopher Kruegel, and Giovanni Vigna, “Your botnet is my botnet: Analysis of a botnet

takeover,” in Proceedings of the 16th ACM Conference on Computer and Communications Secu-

rity, ser. CCS ’09, Chicago, Illinois, USA: Association for Computing Machinery, 2009, pp. 635–

647, ISBN: 9781605588940. DOI: 10.1145/1653662.1653738. [Online]. Available: https:

//doi.org/10.1145/1653662.1653738.

[3] Vinayakumar Ravi, Mamoun Alazab, Sriram Srinivasan, Ajay Arunachalam, and K. P. Soman, “Ad-

versarial defense: Dga-based botnets and dns homographs detection through integrated deep learn-

ing,” IEEE Transactions on Engineering Management, pp. 1–18, 2021. DOI: 10.1109/TEM.

2021.3059664.

[4] Obfuscation: Malware’s best friend | malwarebytes labs, https://blog.malwarebytes.

com/threat-analysis/2013/03/obfuscation-malwares-best-friend/, (Ac-

cessed on 02/15/2022).

[5] Ralph Droms, “Dynamic host configuration protocol,” RFC Editor, RFC 2131, Mar. 1997, http:

//www.rfc-editor.org/rfc/rfc2131.txt. [Online]. Available: http://www.rfc-

editor.org/rfc/rfc2131.txt.

[6] R. Fielding and J. Reschke, “Hypertext transfer protocol (http/1.1): Message syntax and routing,”

RFC Editor, RFC 7230, Jun. 2014, http://www.rfc-editor.org/rfc/rfc7230.txt.

[Online]. Available: http://www.rfc-editor.org/rfc/rfc7230.txt.

79

https://www-statista-com.ezproxy.fhstp.ac.at:2443/statistics/680953/global-malware-volume/
https://www-statista-com.ezproxy.fhstp.ac.at:2443/statistics/680953/global-malware-volume/
https://doi.org/10.1145/1653662.1653738
https://doi.org/10.1145/1653662.1653738
https://doi.org/10.1145/1653662.1653738
https://doi.org/10.1109/TEM.2021.3059664
https://doi.org/10.1109/TEM.2021.3059664
https://blog.malwarebytes.com/threat-analysis/2013/03/obfuscation-malwares-best-friend/
https://blog.malwarebytes.com/threat-analysis/2013/03/obfuscation-malwares-best-friend/
http://www.rfc-editor.org/rfc/rfc2131.txt
http://www.rfc-editor.org/rfc/rfc2131.txt
http://www.rfc-editor.org/rfc/rfc2131.txt
http://www.rfc-editor.org/rfc/rfc2131.txt
http://www.rfc-editor.org/rfc/rfc7230.txt
http://www.rfc-editor.org/rfc/rfc7230.txt

Bibliography

[7] T. Brisco, “Dns support for load balancing,” RFC Editor, RFC 1794, Apr. 1995, http://www.

rfc-editor.org/rfc/rfc1794.txt. [Online]. Available: http://www.rfc-editor.

org/rfc/rfc1794.txt.

[8] P. Mockapetris and K. J. Dunlap, “Development of the domain name system,” in Symposium Pro-

ceedings on Communications Architectures and Protocols, ser. SIGCOMM ’88, Stanford, Califor-

nia, USA: Association for Computing Machinery, 1988, pp. 123–133, ISBN: 0897912799. DOI: 10.

1145/52324.52338. [Online]. Available: https://doi.org/10.1145/52324.52338.

[9] P. Mockapetris, “Domain names - concepts and facilities,” RFC Editor, STD 13, Nov. 1987, http:

//www.rfc-editor.org/rfc/rfc1034.txt. [Online]. Available: http://www.rfc-

editor.org/rfc/rfc1034.txt.

[10] Neville Stanton, Chris Baber, and Donald Harris, Modelling Command and Control: Event Analysis

of Systemic Teamwork. Oct. 2017, ISBN: 9781315595825. DOI: 10.1201/9781315595825.

[11] Carol Simpson, “Internet relay chat,” Teacher Librarian, vol. 28, no. 1, p. 18, 2000.

[12] Simon Heron, “Botnet command and control techniques,” Network Security, vol. 2007, pp. 13–16,

Apr. 2007. DOI: 10.1016/S1353-4858(07)70045-4.

[13] Irc is dead, long live irc | pingdom, https://www.pingdom.com/blog/irc-is-dead-

long-live-irc/, (Accessed on 03/07/2021).

[14] Karikari Abina Mary, “Analysis of web protocols evolution on internet traffic,” PhD thesis, Univer-

sidade da Beira Interior (Portugal), 2014.

[15] Martin Warmer, “Detection of web based command & control channels,” Master’s thesis, University

of Twente, 2011.

[16] Application layer protocol: Web protocols, sub-technique t1071.001 - enterprise | mitre att&ck®,

https://attack.mitre.org/techniques/T1071/001/, (Accessed on 03/07/2021).

[17] Urlhaus | malware url exchange, https://urlhaus.abuse.ch/, (Accessed on 03/07/2021).

[18] A list of the best open source threat intelligence feeds | logz.io, https://logz.io/blog/

open-source-threat-intelligence-feeds/, (Accessed on 03/07/2021).

[19] Eihal Alowaisheq, Peng Wang, Sumayah Alrwais, Xiaojing Liao, Xiaofeng Wang, Tasneem Alowaisheq,

Xianghang mi, Siyuan Tang, and Baojun Liu, “Cracking the wall of confinement: Understanding and

analyzing malicious domain take-downs,” Jan. 2019. DOI: 10.14722/ndss.2019.23243.

80

http://www.rfc-editor.org/rfc/rfc1794.txt
http://www.rfc-editor.org/rfc/rfc1794.txt
http://www.rfc-editor.org/rfc/rfc1794.txt
http://www.rfc-editor.org/rfc/rfc1794.txt
https://doi.org/10.1145/52324.52338
https://doi.org/10.1145/52324.52338
https://doi.org/10.1145/52324.52338
http://www.rfc-editor.org/rfc/rfc1034.txt
http://www.rfc-editor.org/rfc/rfc1034.txt
http://www.rfc-editor.org/rfc/rfc1034.txt
http://www.rfc-editor.org/rfc/rfc1034.txt
https://doi.org/10.1201/9781315595825
https://doi.org/10.1016/S1353-4858(07)70045-4
https://www.pingdom.com/blog/irc-is-dead-long-live-irc/
https://www.pingdom.com/blog/irc-is-dead-long-live-irc/
https://attack.mitre.org/techniques/T1071/001/
https://urlhaus.abuse.ch/
https://logz.io/blog/open-source-threat-intelligence-feeds/
https://logz.io/blog/open-source-threat-intelligence-feeds/
https://doi.org/10.14722/ndss.2019.23243

Bibliography

[20] Daniel Plohmann, Dgarchive - fraunhofer fkie, https://dgarchive.caad.fkie.fraunhofer.

de/site/families.html, (Accessed on 02/20/2021), Feb. 21.

[21] Daniel Plohmann, Khaled Yakdan, Michael Klatt, Johannes Bader, and Elmar Gerhards-Padilla,

“A comprehensive measurement study of domain generating malware,” in Proceedings of the 25th

USENIX Conference on Security Symposium, ser. SEC’16, Austin, TX, USA: USENIX Association,

2016, pp. 263–278, ISBN: 9781931971324.

[22] Niall Fitzgibbon and Mike Wood, “Conficker. c: A technical analysis,” Sophos Labs, Sophos Inc,

vol. 1, 2009.

[23] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman, Compilers: Principles, Techniques,

and Tools (2nd Edition), 2nd Edition. Addison-Wesley Longman Publishing Co., Inc., 2006, ISBN:

0321486811. DOI: 10.5555/1177220.

[24] Design of cpython’s compiler - python developer’s guide, https://devguide.python.org/

compiler/, (Accessed on 02/16/2022).

[25] Glossary — python 3.10.2 documentation, https://docs.python.org/3/glossary.

html, (Accessed on 02/16/2022).

[26] Daniel Wang, Andrew Appel, Jeffrey Korn, and Christopher Serra, “The zephyr abstract syntax de-

scription language.,” Jan. 1997, pp. 213–228.

[27] Examples of working with asts — green tree snakes 1.0 documentation, https://greentreesnakes.

readthedocs.io/en/latest/examples.html, (Accessed on 02/16/2022).

[28] Sandeep Yadav, Ashwath Reddy, A. Reddy, and Supranamaya Ranjan, “Detecting algorithmically

generated malicious domain names,” Jan. 2010, pp. 48–61. DOI: 10.1145/1879141.1879148.

[29] Martin Grill, Ivan Nikolaev, Veronica Valeros, and Martin Rehak, “Detecting dga malware using

netflow,” in 2015 IFIP/IEEE International Symposium on Integrated Network Management (IM),

2015, pp. 1304–1309. DOI: 10.1109/INM.2015.7140486.

[30] Kaspersky threats — shiz, https://threats.kaspersky.com/en/threat/Backdoor.

Win32.Shiz/, (Accessed on 03/22/2022).

[31] Tommy Chin, Kaiqi Xiong, Chengbin hu, and Yi Li, “A machine learning framework for studying

domain generation algorithm (dga)-based malware: 14th international conference, securecomm 2018,

singapore, singapore, august 8-10, 2018, proceedings, part i,” in. Aug. 2018, pp. 433–448, ISBN: 978-

3-030-01700-2. DOI: 10.1007/978-3-030-01701-9_24.

81

https://dgarchive.caad.fkie.fraunhofer.de/site/families.html
https://dgarchive.caad.fkie.fraunhofer.de/site/families.html
https://doi.org/10.5555/1177220
https://devguide.python.org/compiler/
https://devguide.python.org/compiler/
https://docs.python.org/3/glossary.html
https://docs.python.org/3/glossary.html
https://greentreesnakes.readthedocs.io/en/latest/examples.html
https://greentreesnakes.readthedocs.io/en/latest/examples.html
https://doi.org/10.1145/1879141.1879148
https://doi.org/10.1109/INM.2015.7140486
https://threats.kaspersky.com/en/threat/Backdoor.Win32.Shiz/
https://threats.kaspersky.com/en/threat/Backdoor.Win32.Shiz/
https://doi.org/10.1007/978-3-030-01701-9_24

Bibliography

[32] Deepak Kumar Vishwakarma, “Domain name generation algorithms [online],” SUPERVISOR: Ing.

Mgr. et Mgr. Zdeněk Říha, Ph.D., Diplomová práce, Masarykova univerzita, Fakulta informatiky-

Brno, 2017. [Online]. Available: https://theses.cz/id/6c0o95/.

[33] Osint feeds from bambenek consulting, https://osint.bambenekconsulting.com/

feeds/, (Accessed on 02/20/2022).

[34] Dga - netlab opendata project, https://data.netlab.360.com/dga/, (Accessed on

02/20/2022).

[35] Pep 8 – style guide for python code | python.org, https://www.python.org/dev/peps/

pep-0008/, (Accessed on 02/22/2022).

[36] Srdan Popić, Gordana Velikić, Hlavač Jaroslav, Zvjezdan Spasić, and Marko Vulić, “The benefits of

the coding standards enforcement and it’s influence on the developers’ coding behaviour: A case study

on two small projects,” in 2018 26th Telecommunications Forum (TELFOR), IEEE, 2018, pp. 420–

425. DOI: 10.1109/TELFOR.2018.8612149.

[37] Error codes — pydocstyle 6.1.1 documentation, http://www.pydocstyle.org/en/6.1.1/

error_codes.html, (Accessed on 02/22/2022).

[38] Flake8: Your tool for style guide enforcement — flake8 4.0.1 documentation, https://flake8.

pycqa.org/en/latest/, (Accessed on 02/22/2022).

[39] Pandas - python data analysis library, https : / / pandas . pydata . org/, (Accessed on

02/22/2022).

[40] Pep 498 – literal string interpolation | python.org, https://www.python.org/dev/peps/

pep-0498/, (Accessed on 02/25/2022).

[41] The python standard library — python 3.10.3 documentation, https://docs.python.org/

3/library/, (Accessed on 03/20/2022).

82

https://theses.cz/id/6c0o95/
https://osint.bambenekconsulting.com/feeds/
https://osint.bambenekconsulting.com/feeds/
https://data.netlab.360.com/dga/
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/
https://doi.org/10.1109/TELFOR.2018.8612149
http://www.pydocstyle.org/en/6.1.1/error_codes.html
http://www.pydocstyle.org/en/6.1.1/error_codes.html
https://flake8.pycqa.org/en/latest/
https://flake8.pycqa.org/en/latest/
https://pandas.pydata.org/
https://www.python.org/dev/peps/pep-0498/
https://www.python.org/dev/peps/pep-0498/
https://docs.python.org/3/library/
https://docs.python.org/3/library/

	1 Introduction
	1.1 Problem Description
	1.2 Research Question
	1.3 Contribution
	1.4 Thesis Outline

	2 Basics
	2.1 Domain Name System
	2.2 Command and Control
	2.2.1 Protocols

	2.3 Domain Generation Algorithm
	2.4 Abstract Syntax Tree

	3 Related Work
	3.1 Detection of DGAs
	3.2 Analysis of DGAs

	4 Approach
	4.1 DGA Collection
	4.1.1 Sources of DGAs
	4.1.2 Sampling DGAs

	4.2 Practical Implementation
	4.2.1 An Abstract DGA Class
	4.2.2 A DGA Child Class
	4.2.3 Coding Standards Enforcement

	4.3 DGA Analysis
	4.3.1 Analyzation Method
	4.3.2 Analyzation Workflow
	4.3.3 Phase 1: Validity and Variance
	4.3.4 Phase 2: Collection of Metrics via AST
	4.3.5 Phase 3: Enrichment and Creation of Data Files
	4.3.6 Metrics: Modules
	4.3.7 Metrics: Parameters
	4.3.8 Metrics: Implementation Specifics
	4.3.9 Metrics: Complexity

	5 Evaluation
	5.1 3rd Party Dependency
	5.2 Proprietary or Complex Code Elements
	5.3 General Classifications

	6 Conclusion
	6.1 Future Work

	A Appendix: Repositories of DGAs
	B Appendix: Source Code
	B.1 DGA Child Class Skeleton
	B.2 DGA Analysis Phase 1: Validity and Variance
	B.3 DGA Analysis Phase 2: Collection of metrics via AST
	B.4 DGA Analysis Phase 3: Enrichment and creation of data files

	C Appendix: Metrics Collected via AST
	List of Figures
	List of Tables
	Glossary
	Bibliography

