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Abstract—The rise of Industry 4.0 and cyber-physical systems has led to an abundance of large
amounts of data, particularly in the manufacturing industry. Visualization and visual analytics
play essential roles in harnessing this data. They have already been acknowledged as being
among the key enabling technologies in the fourth industrial revolution. However, there are many
challenges attached to applying visualization successfully, both from the manufacturing industry
and visualization research perspectives. As members of research institutions involved in several
applied research projects dealing with visualization in manufacturing, we characterized and
analyzed our experiences for a detailed qualitative view, to distill important lessons learned, and
to identify research gaps. With this article, we aim to provide added value and guidance for both
manufacturing engineers and visualization researchers to avoid pitfalls and make such
interdisciplinary endeavors more successful.

INTRODUCTION AND BACKGROUND

With the digitization of the manufacturing
industry, enormous amounts of industrial data are
collected. Expectations regarding quality, costs,
delivery time, durability, and environmental as-
pects are rising. Data-driven manufacturing is a
promising way of keeping up with these demands.
It opens up unprecedented opportunities to under-

stand the impact of decisions on engineering per-
formance and customer satisfaction. The ability
to turn industrial data into actionable decisions
plays a key role in remaining competitive.

Data-driven manufacturing strategies range
from design and process optimization to pre-
dictive maintenance. Data is acquired across all
stages of a manufacturing process, from design
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through production to quality control and mainte-
nance. Heterogeneous sources collect large, mul-
tivariate, and often time-dependent data sets.

This data needs to be analyzed to understand
the behavior of a measured or simulated system,
explore phenomena and trends, discover depen-
dencies, and finally make an informed decision
about the situation at hand. Despite companies
having recognized its value1, we recognized that
many of them struggle with how and where to
start making sense of their data. As a conse-
quence, its potential remains largely unused.

With this paper, we share retrospective reflec-
tions on our personal engagement in developing
visual-interactive strategies that foster the use of
data to solve analytical tasks in manufacturing.
We report and reflect on our involvement in
application-oriented research collaborations with
industry partners to provide hands-on insights. By
identifying commonalities among our projects,
we aim to contribute to a shared understanding
of the role of visualization in manufacturing.

We present a collection of 13 projects where
visualization played a major role in product
development or manufacturing processes. The
overview provides information about the manu-
facturing context, the usage scenario, visualiza-
tion idioms, and further details. From this, we
derive lessons learned regarding our interdisci-
plinary collaborations as well as insights into the
role of visualization for industrial data analysis.
We also share our view on possible future direc-
tions for visualization research.

RELATED WORK
Industry 4.0 describes the ongoing transfor-

mation of manufacturing processes towards in-
creased interconnectivity and automation. This
development comes with the need for elabo-
rated analysis functionality for large, multivariate
datasets with high levels of precision in all dimen-
sions [1]. It is therefore not surprising that visual
computing has been recognized as one of the key
enabling technologies in Industry 4.0 [13]. Only
visual interfaces allow users to capture, analyze,
and interact with both the real and the virtual
production world. Their combination with data

1The analogy ”data is the new oil” is often used to describe
its relevance as a resource that drives digitization. W

Visualization in Industrial Practice
The interplay between visualization research and
industrial practice is also a common subject to
scientific workshops. Recent contributions to the
VisGap Symposium were dedicated to the conflict-
ing interests of research and industrya as well as the
role of visualization in decision support systemsb.
VisInPractice panels have targeted the impact on
industryc, industrial case studiesd, or practitioner
collaborationse. Criteria for developing and main-
taining visualization software have been subject to
a NII Shonan meeting [14]. While such discussions
encourage further evolution of directive experiences
and lessons learned, their advice is mainly agnostic
to the application domain. In contrast, application
spotlights at IEEE Vis showcase practical uses of
visualization, e.g. in industrial productionf or to op-
timize real-world decision-makingg. As spotlights,
however, they shed light only on individual facets.
In contrast, we combine our experience from a range
of applications to convey a broader picture.

aP. Gospodnetic et al. ”From Research Topic to In-
dustrial Practice: An Experience Report”. VisGap 2020.

bB. Kämpgen ”The role of visualization in decision
support systems - Differences between academia and
industry”. Capstone at VisGap 2021.

cVisInPractice at IEEE VIS 2017, Phoenix, Arizona.
dVisInPractice at IEEE VIS 2018, Berlin, Germany.
eVisInPractice at IEEE VIS 2021, Virtual.
fP. Gospodnetic et al. ”The Role of Visualization

in Industrial Production”. Application Spotlights, IEEE
VIS 2020.

gJ. Ahrens et al. ”Feature-based Visual Interactive
Systems to Optimize Decision Making”. Application
Spotlights, IEEE VIS 2019.

mining algorithms, referred to as visual analytics,
has proven to be an effective approach to making
decisions based on large and complex data [9].

Visualizations in industrial manufacturing
have already proven their potential for a variety
of purposes, e.g. to improve the efficiency of
production processes [17], to improve the quality
of products, e.g., by realizing large manufacturing
schedules [8], or to monitor the performance
of production lines [19]. However, reflections
mainly target the individual case study contexts,
resulting in isolated lessons learned.

In their literature review, Zhou et al. collect
visualizations of industrial data across a spectrum
of analysis scenarios and phases of the manufac-
turing life cycle [20]. Their findings underline
the wide range of data, users, and analytical
tasks that make general recommendations regard-
ing visualization support difficult. Although they
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have already been successfully applied, interac-
tive visualization techniques have not yet reached
the expected dissemination [3]. The availability
of industrial data, the shift towards data-driven
decision-making, and the vague understanding
of visualization in manufacturing contexts raise
the need for further discussion about the use of
industrial data visualization in practice.

METHOD
In this work, we take a retrospective look

at visualization introduced to different stages
of industrial manufacturing processes. Our goal
is two-fold: 1) achieve a better understanding
of methods that are currently applied and 2)
summarize our essential lessons learned so far.
Visualization design depends on the experiences,
views, intuition, and interests of both researchers
and engineers [10]. To address this, we draw on a
wealth of personal experience with representative
projects, on which we can base our findings. In
contrast to a systematic literature review, we opt
for a qualitative approach of introspecting our
own visualization research experiences. This al-
lows us to dig deeper into contextual information,
failures on the way, or particularly challenging
aspects that would otherwise be difficult to extract
from the outside based on scientific papers only.
None of the analyzed projects was carried out
collaboratively between subsets of the authors.
Thus, we were able to collect a diverse range of
projects. We are confident that we can provide
representative results that can be generalized to a
certain extent.

In the further course of this paper, we use
the terms researchers to refer to visualization
researchers, engineers for domain experts from
the industry, and partners to mean both of them.

Project Selection and Description
We reviewed 13 projects that represent differ-

ent applications of visualization in manufacturing.
All projects were conducted within the last four
years. They involved collaboration with industry
partners from Austria and Germany. An initial
discussion yielded a number of characteristics to
gather for each of these projects. Starting with
basic information like project name, topic, and
goal, we iteratively refined the collection and
ended up with a total of 29 aspects. In the context

of this article, we focus on 14 of these aspects
that best reflect the core characteristics. Interested
readers are referred to the supplementary material
for further details. We used a large matrix to
gather this descriptive information based on doc-
umentation, software prototypes, project reports,
and discussions with co-workers.

Analysis and Reflections
From the tabular overview of the projects, we

first derived a characterization scheme including
categories for data sources, analytic tasks, and
visualizations. Using open coding and aggrega-
tion, we collected commonalities and differences
among the projects. At multiple points in the tag-
ging period, we discussed the definitions of tags
among all authors and adjusted their use accord-
ing to the consensus reached. Commonalities hint
at potential trends, whereas differences point at
situational characteristics. In multiple discussion
sessions among all authors, we finally collected
lessons learned about both success factors as well
as challenges.

SELECTED RESEARCH PROJECTS
In the following, we discuss our experiences

with research collaborations in different indus-
trial data analysis settings. We categorize them
according to the four phases design, operation,
quality control, and service of the manufacturing
life cycle. Table 1 provides a structured overview
and characterization of the investigated projects.

Design Phase
Engineering design is about creating a func-

tional system or process that fulfills desired needs
and specifications within given constraints. At the
core of this phase are multi-criteria decisions.
An objectively optimal design generally does not
exist. Instead, engineers need to apply their expe-
rience to choose the most-preferred compromise.

PAVED: In close collaboration with a mecha-
tronics research company, a parallel coordinates
visualization has been designed to support motor
designers in exploring which level of motor per-
formance is achievable under different conditions
[4]. The visualization provides a compact and
lossless overview of the design options gener-
ated by an optimization algorithm (Figure 1).
Observing the effects of both formal constraints
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Figure 1: PAVED: Interactive parallel coordinates
help motor designers choose a compromise from
a number of Pareto-optimal design options [4].

and informal preferences allows the engineers to
understand which trade-offs are involved and to
justify their decision accordingly.

COMPO*SED: In a follow-up of the PAVED
project, the visualization design is adapted to
further support the design of systems that consist
of multiple interacting components.

En2VA: Visual analytics techniques also help
using and validating simulation models. Under-
standing the influence of parameters on the sim-
ulation results and comparing different results
are important tasks in engine design. To this
end, a visual framework for analyzing simulation
ensembles was designed, where it is possible to
rank simulation results based on different criteria.

Operation Phase
The operation phase transforms the previously

chosen design option into a physical result. The
main goal is to achieve high quality, while keep-
ing production time and costs low2. Tasks like
planning the production, monitoring the operating
status, troubleshooting downtime or high scrap
rates, determining when to best replace machine
parts, and identifying systematic process flaws
highly benefit from an analysis of process data.

Planning The optimal planning of production
processes includes a multitude of constraints such
as production steps, necessary machinery, person-
nel, and order dates that need to be taken into
consideration. In largely custom-made and built-
to-order production, this step is decisive for the
success of a company.

InnoFIT: In this project, a consortium of
scientific and industry partners works on the im-

2The constraints quality, time, and cost mark the corners of
the so-called iron triangle (also referred to as triple constraint).

Figure 2: INGRESS: Visual views enabled pro-
cess engineers to compare different runs (batches)
of a manufacturing process.

provement of forecasting processes and forecast
quality with the use of statistical methods, visu-
alization, and data analytics tools. These methods
are used for the analysis of forecasted and current
orders, visualization of the forecast evolution, vi-
sualization of forecast error measures with respect
to its evolution, as well as the clustering of similar
products with same forecast behaviour [11].

Monitoring Production monitoring is probably
one of the first areas that come to mind when
thinking about the application of visualization
in manufacturing. The application of graphical
methods to display machine and production states
for monitoring and quality assurance has a long
tradition and includes analog shop-floor boards as
well as digital and interactive dashboards.

Greiner BigDataVis: Together with a plas-
tic packaging manufacturer that uses injection
moulding machines, a set of novel visual inter-
faces was designed to monitor sensor data of
machines and the environment as well as machine
error logs (Figure 3). The main goal in this project
was to ensure consistently high production quality
and low numbers of rejects.

INGRESS: In the project, several views were
combined to enable the comparison of different
runs in a production process. In this example, re-
fractory bricks are produced in different batches,
and one aim of the process engineers was to
compare different batches. Together with the en-
gineers, a visual framework for the analysis of
production batches was designed (Figure 2). In
this framework, significant differences between
consecutive production runs could be identified.

AARiP: Hearing protections are mandatory
for workers in many production facilities. The
main idea in this project was to turn them into
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(a) Machine overview (b) Parameter deviation and error logs (c) Error analysis

Figure 3: Greiner BigDataVis: Injection moulding machine monitoring and analysis of error logs.

Figure 4: Chassis analysis: Visualization helps
determine a set of sensors to replace a malfunc-
tioning sensor. It is evaluated by its ability to
consistently capture the target characteristics [5].

an acoustic information interface as well as an
assistance system. This allows for the commu-
nication of real-time information using a differ-
ent interface modality, which frees workers from
the need to look at or haptically interact with
other interfaces. The developed methods allow
for the acoustic representation of machine and
surrounding noises (process-relevant deviations
from the norm), machine-related and production-
related data (inventory, scope, setup, etc.), and
verbal communication [6]. Visualization comes
into play for the testing and simulation environ-
ment in virtual reality that was used in the project.

Chassis analysis: How to replace a missing
or malfunctioning sensor with a virtual sensor
was investigated in a project with a German auto-
mobile manufacturer. Various car characteristics
needed to be measured during a real-world test
drive to model the vehicle’s driving behavior for
a digital twin. Modeling was supported by a
visual-interactive feature selection technique [5].
The model-agnostic selection criterion determines
how consistently a sensor subset captures the
characteristics of a sensor to be replaced (Figure

Figure 5: BlueDAT: Keeping track of the loca-
tion of products in large production sites (Left:
time-oriented view with color-coded spatial areas;
right: map view) [7].

4). This approach can also be used to model a
quantity that is too expensive or difficult to mea-
sure using cheaper or more manageable sensors.

proSVIFT: Monitoring machine health is of
particular importance for autonomous systems.
Without a human operator involved, these sys-
tems need capabilities to diagnose and anticipate
failures and proactively ask for repair. A visual-
interactive model editor is developed to help
engineers with the systematic specification of po-
tential component failures, their probabilities, and
how severe they affect the surrounding system
hierarchy. Based on the probabilistic model, diag-
nostic and prognostic inference can be performed.
The main goal in this project is a condition
monitoring approach that balances the safety and
availability of the monitored system.

BlueDAT: Another problem area for a spe-
cific class of manufacturing companies is keeping
track of products and materials within their often
very large premises. This can lead to situations
where containers are lost or take a long time to
find. Asset tracking aims to efficiently monitor the
products’ whereabouts and analyze the produc-
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Figure 6: Bridge vibrations: Linked views depict
seasonal patterns (top) and daily trends (right)
of bridge transits as well as correlations between
dimensions of the resulting vibrations (bottom).

tion flow. In a collaboration with a manufacturer
of fittings, localization is realized using Bluetooth
LE technology and interactive visualizations are
used to show the locations of the assets as well
as their position history [7] (Figure 5).

Quality Control and Service Phase
Before products can be shipped, their func-

tionality has to be validated. If a product is defec-
tive or does not match manufacturing tolerances,
engineers are interested in the root cause to avoid
entire batches of rejections. While inspections
were predominantly carried out manually in the
past, quality control has increasingly become
data-driven to shorten production cycles.

EoL: An example is the end-of-line test-
ing project, where visualization researchers and
mechatronics scientists work towards an auto-
mated failure classification that exploits the do-
main knowledge of engineers. The unit under test
(an electric motor) is exposed to a stimulus and its
response (the motor’s current signals) is recorded.
Interactive visualization is used for the analysis of
operating conditions and signal shapes to inform
the creation of a data-driven failure model. In par-
ticular, it considers the engineers’ experience with
the unit under test, domain-specific semantics and
expectations, previously unknown anomalies, and
additional diagnostics to identify and evaluate
potential features for classification.

Following quality control, the product’s de-
livery marks the transition to the service phase.
Here, usage data are acquired to trace long-
term quality, defects, and customer satisfaction
in order to provide assistance and improve the
manufacturing life cycle.

Bridge vibrations: This also applies to public

infrastructure such as bridges. In a project with
a research institute in the domain of structural
durability, vibration data of a sensor-equipped
bridge were analyzed to identify early signs of
damage, aging, or load peaks. The main goal of
visualization is to provide an overview of char-
acteristic vibration behaviors and how they are
related to external factors like daily and seasonal
patterns, intensity of use, or the aging process
(Figure 6). This helps to determine a baseline
behavior, so that anomalies can be identified as
deviations from the known behavior.

RAILING: Another example was explored in
this project, where differences in the quality of
welding seams on metal parts had to be traced
back to different parameter settings in the pro-
duction process. This allowed process engineers
to relate quality issues in the results to process
parameters, in which way they could identify
faulty or unfavorable settings in the production.

DISCUSSION
In all 13 projects, we identified interactive

visualizations and visual analytics as very helpful
tools for analyzing data in the manufacturing
industry. We experienced that the planning and
monitoring of a manufacturing process currently
pose the biggest challenges for visualization.

Sector: The selected projects could mainly be
assigned to the industry sector C-Manufacturing.
Two projects also matched the schemes F-
Construction and H -Transportation and Storage.

Phase and focus: The majority of projects
(seven) relate to the operation phase. Projects
in this phase mainly focused on the manufac-
turing process itself. The rest of the projects
were equally distributed among the design phase
(three) and the quality control and service phase
(three). These projects mainly focused on the
product to be manufactured.

Optimize for: Seven of the projects aimed
at optimizing quality, of which three simultane-
ously aimed at optimizing costs. One project was
about directly optimizing costs. The remaining
five projects focused on optimizing time. The
project details, sorted by the respective phases,
are summarized in Table 1.

Data source: The data collected by the indus-
try partners was usually quite large (hundreds to
millions of data rows). We noticed a dominance
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of time-dependent and multivariate data (similar
to domains like energy and climate research).
In many cases, the data came in the form of
simulation ensembles, especially in the design
phase. In other cases, particularly in the operation
phase, sensor recordings were most common.
In contrast to other domains like cyber security
or social sciences, geo-referenced data requiring
map-based visualizations or graphs are less often
present. The main reason why industry partners
started research projects were severe limitations
that they experienced with existing solutions (of-
ten based on Excel) due to the sheer data volumes
and the large solution space.

Visualization and interaction: We mainly ap-
plied basic charts (e.g., line charts, box plots,
bar charts), parallel coordinates, and some cus-
tom charts developed together with the domain
experts. All of the charts included interaction
techniques and were most often arranged in mul-
tiple coordinated view interfaces. One project
made use of virtual reality technologies. In many
cases, the implementation of the applications was
based on web technologies and libraries (e.g.,
D3.js), while others employed scripting environ-
ments like Python and Jupyter. Only two projects
involved stand-alone systems based on C++. In
one case, the commercial tool Tableau was used
for data analysis. Traditional data analysis frame-
works often provide the possibility to create basic
visualizations that might be enough for domain
experts to grasp the main patterns in a dataset.
However, creating interactive applications is not
trivial and commercial tools like Tableau are not
explicitly suited for engineering data. Therefore,
there is still a need to support the creation of
well-suited interactive visualizations.

Users: The end users in our projects had di-
verse engineering roles and responsibilities. Nev-
ertheless, a commonality is that most of them had
only little experience in data visualization.

Tasks: The analysis tasks cover different data-
driven ambitions to understand the behavior of
products and processes along the entire manu-
facturing life cycle. While confirmatory analyses
may occur, open explorations - where engineers
cannot explicitly describe the phenomena they
are looking for - are more common. Depending
on their role, the users’ analysis tasks varied
from multi-attribute choices through parameter

space and root-cause analysis to correlation tasks
(forecasting, inference, regression) and pattern
exploration. Unlike other domains, engineering
activities are largely prescribed by standards. To
categorize the tasks in our table, we initially
tried to apply a task taxonomy from visualization
literature, but soon realized that its granularity did
not match the distribution in our projects.

Evaluation and TRL: Nearly half of the
projects included a qualitative or quantitative
evaluation of the developed application. One of
their common outcomes was that interfaces with
multiple views and additional operators (e.g.,
filters) require a proper familiarization phase for
users without a visualization background. While
our projects cover a wide range of Technology
Readiness Levels (TRL), we noticed that none of
the applications with the highest TRL have been
evaluated, mostly due to integration and customer
issues that have been prioritized.

In summary, we can confirm that visualization
and visual analytics are an essential driver of
the digitization in the manufacturing industry.
Visualizations are particularly helpful for engi-
neering scenarios that require an understanding
of simulation ensembles or an efficient handling
of large and/or heterogeneous data sets.

LESSONS LEARNED
To explicitly share our experiences, we de-

rived several best practices for applying visualiza-
tions in industry and put them in context with ex-
isting related work on visualization applications.
Performing visualization research in the industry
strongly relates to conducting design studies. Our
collection emphasizes, but also extends, the prac-
tical considerations and pitfalls that Sedlmair and
colleagues proposed in this context [15]. Where
appropriate, we refer to the stages and pitfalls of
their methodological framework (text in brackets).
We anticipate that both visualization researchers
and industrial engineers will find this collection
of lessons learned helpful.

We found applied visualization research in the
manufacturing industry to be likely successful if...

... partners are interested and committed.
This is what makes a collaboration fun and

drives productivity. We believe that a positive rap-
port between researchers and domain experts is a
prerequisite to achieve a project flow that comes
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with deep focus, mutual understanding, mental
clarity, and promising ideas (PF-11, winnow).
It can also lead to desirable long-term effects
beyond the project, e.g. when it comes to software
maintenance, consulting, or follow-up initiatives.
This is particularly important in manufacturing,
where companies typically do not start research
projects with external partners easily.

... engineers see the value of visualization.
A knowledge gap regarding the potential of

visualization is a natural aspect of visualization-
industry cooperations. This applies even more
to the manufacturing domain, where the digital
transformation draws the attention to fast results
from automated processes. Confirming known
insights by visualizing test data is a common
advice, but it particularly helps to draw the en-
gineers’ focus from automated towards visual-
interactive analysis. Companies are dealing with
different digitization technologies and visualiza-
tion is just one of them. Market competition is
driven by time, quality, and cost benefits, which
visualization rarely quantifies at first sight. En-
gineers should not hold visualization projects re-
sponsible for short-time profit, but rather consider
them a part of their digitization strategy. Industry
experts need to be open and patient when it comes
to applying visualization in their fields.

... high-quality data are available.
Interestingly, despite the focus being on visual-
ization and visual analytics, the main challenge
in many projects was not providing a novel vi-
sualization technique, but rather getting the right
data in proper quality and in a specific format.
Companies are sometimes reserved about real
data leaving their internal space. At the beginning
of a collaborative project, in many cases only test
data sets are available. This problem was also
discussed by Walny et al. [18] and named C1–
Adapting to Data Changes. We can confirm that
we also had this problem in our projects. The
data is often scattered across different platforms
(e.g. systems, notes, and logs). The effort required
for data merging and wrangling to achieve a
structured format is often underestimated (PF-
4, winnow). It is further complicated by data
formats being proprietary or poorly documented.
This particularly regards the semantics of param-
eters, which are often named using cryptic ab-
breviations. Data consistency and availability are

common data problems when implementing visu-
alization projects [14, 18]. Very few companies
include data quality measures in their processes,
resulting in data often being messy (i.e., missing
or faulty values) and sometimes not covering im-
portant measurement periods. This was especially
the case for the projects BlueDAT, INGRESS,
and RAILING. It was interesting to see that our
company partners were not aware of their data
provision problems until the implementation of
the described research projects.

... artifacts fit the technical environment.
Most projects included the development of new
visualization software. A decisive criterion re-
garding the further usage of the developed tech-
niques was whether they fit into the existing
environment of data interfaces and tools. In the
proSVIFT project, we kept hearing that a novel
solution can only be established if it connects to
existing tools with the highest market share. This
was similar in the RAILING project. We experi-
enced the requirement of new tools to fit into ex-
isting environments in manufacturing companies
to go beyond what is mentioned as challenge C3–
Understanding Technical Constraints by Walny
et al. [18]. From a technological perspective, an
integration requires a detailed analysis of the
environment and how users are going to access
the tools (e.g., directly, via a web browser, via
cloud services, or other client interfaces). Reina
et al. suggest to have building blocks of visual-
ization artifacts available to support the develop-
ment process of new tools [14]. We can confirm
that visualization modules, and also open source
libraries, facilitate the development process.

... visualization embraces domain practices.
The development of new visualization approaches
required a user-centered approach that involved
constant communication to understand the appli-
cation setting, collect requirements, validate as-
sumptions, and evaluate design options (discover,
design, reflect). Researchers should also detail
how the visualization is intended to blend in with
the engineers’ current practices (similar to C5–
Communicating Data Mappings) [18]). Ideally, a
project considers these needs, while at the same
time inspiring engineers to think differently about
their tasks and approaches.

... the topic is already well-understood.
Pushing the frontiers forward requires a funda-
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mental understanding of the targeted problem.
Scientifically interesting problems and innovative
solutions are not found at the surface but can
only be identified during long-term collabora-
tions, where increasingly complex problems are
uncovered over time. As an example, it was not
until the evaluation of PAVED that we encoun-
tered an even more challenging research problem
leading to the follow-up COMPO*SED project.

... the ideas of engineers are acknowledged.
To avoid focusing on visualization solutions prior
to having understood the problem, researchers
should ask what engineers want to learn during an
analysis rather than what they want to see (PF-
17, discover). However, in the PAVED project,
we found that even if it is not their responsi-
bility, engineers might have an accurate vision
of meaningful visualization solutions. Although,
we tended to neglect their suggestions at first,
they contributed significantly to the final visu-
alization design. We therefore recommend that
even if researchers might feel that their expertise
is underrated, they should acknowledge the ideas
of their collaborators despite the engineers’ likely
limited visualization background.

These lessons learned reflect our personal
observations related to conducting application-
oriented projects in interdisciplinary teams and
dealing with external requirements. They mainly
relate to the precondition and early core phase
of the nine-stage framework [15]. This does not
mean that the remaining stages have been ir-
relevant for our projects. We can confirm the
framework as being a helpful guideline for car-
rying out applied visualization research projects
in industry. In this sense, working with com-
pany partners from the manufacturing industry
shows commonalities with visualization research
projects in other domains (e.g., medicine, biology,
physics). We also identified some issues that
were not emphasized by existing approaches. As
one important insight, we would like to mention
the demands placed on visualization systems to
fit into existing environments. Furthermore, the
availability of data in the required quality turned
out to be a recurring and prominent problem when
working with industry partners.

RESEARCH CHALLENGES
The interactive visualization gap [3], although

diminishing in general, still exists when we talk
about manufacturing applications. Visualization
and visual analytics tools are not recognized as
essential assets to be integrated into daily work-
flows. We particularly need to be aware of the
fact that this application domain is largely driven
by the ”time is money” principle. We need to find
new ways of demonstrating how visualization can
serve the common KPIs in manufacturing. In par-
ticular, we need to put engineers in the position to
recognize analysis problems that cannot be solved
by an automated data analysis only.

User Guidance & Onboarding
We often heard from domain experts that

highly flexible and interactive visualization
frameworks with many views on the screen tend
to overwhelm novice users. This calls for guid-
ance in visual analytics, a forward-oriented pro-
cess that aims to help users in carrying out an-
alytical work. However, some engineers are also
hesitant to fully rely on guidance because they
assume that inaccuracies might lead to interesting
regions being overlooked. In this case, onboard-
ing approaches can help users develop a general
understanding of how to read, interact with, and
interpret the visual representations [16]. More
research efforts on how to design onboarding
and guidance would lower the entry barrier for
engineers to work with visualizations.

Data Wrangling
Many data infrastructures in industry compa-

nies have grown historically and consist of mul-
tiple, often incompatible, data silos. Therefore, a
significant challenge in any data-based project is
to collect and join the necessary data elements.
Along the manufacturing life cycle, this particu-
larly involves the combination of heterogeneous
items like time series, logs, and audio recordings.
Visual analytics could help to get an overview of
the data sources, judge the quality of the collected
data, and identify suitable interfaces for joining
the data (e.g., by timestamp or machine number).
In this way, the startup time of projects could be
reduced and more effort could be put into the
actual support of the users’ analytical workflow.
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Integration Into Existing Environments
Data visualization and analytics are not com-

pletely new to engineers. Over the last years, they
already established data workflows using different
environments and tools (e.g., Python scripts or
BI systems). The acceptance of new applications
strongly depends on their ability to blend in
with existing workflows and standards. Such an
integration can involve providing extensions to
well-known visualization packages or command-
line support for existing environments.

As data elements are often tied to physical
locations in a plant, a better integration of vi-
sualization into the physical realm of users in
their work environment appears to be a promising
research direction. Particularly, approaches be-
yond classical desktop interfaces can lead to a
more seamless integration. This includes visual-
ization on mobile devices such as smartphones,
tablets, or smartwatches; multimodal interfaces
that combine visual representations with other
modalities such as sonification or natural lan-
guage interfaces; as well as immersive analytics
approaches that make use of stereoscopic display
technologies such as AR headsets.

Future Application Topics
The service phase has rarely been addressed

by visualization approaches so far. Besides, the
design and operation phases still pose exciting
challenges for future visualization research. This
is also reflected in the publications that originated
from the 13 projects. We particularly identified
engineering design as a promising direction to ap-
ply visualization in manufacturing. It requires an
analysis of multivariate simulation or sensor data
to inform multi-criteria decision-making. Both the
analysis of multivariate and time-oriented data as
well as the decision support are active fields in vi-
sualization research. Yet, research ambitions have
not been dedicated to the particular characteristics
and requirements of engineering design so far.

CONCLUSION
Visualization and visual analytics are essential

techniques for making data from industrial man-
ufacturing processes usable and understandable.
In this paper, we characterize and classify our
experiences with visualization research projects
in the manufacturing industry and summarize

our findings. The main insight is that a good
understanding of the application domain and an
iterative development with domain experts are
crucial to achieve the acceptance of end users.
Pitfalls were rather related to getting the right
data in sufficient quality than to providing a
suitable visualization. The paper is based on our
involvement in 13 visualization projects that were
conducted over the last four years in Austria and
Germany. We analyzed our projects along the
four phases design, operation, quality control, and
service of a manufacturing production process.
Although each phase is represented in our col-
lection, most of the visualization projects so far
have been conducted in the design and operation
phases. From a visualization research perspective,
open research questions address the support for
data quality monitoring and data wrangling, the
integration of visualization solutions into exist-
ing workflows, and guidance for novice users.
It might also be beneficial to complement our
visualization research point of view with the
collaboration perspectives of our domain experts.
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