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Abstract
One of the commonly used visualization techniques for multivariate data is the parallel coordinates plot. It provides users with
a visual overview of multivariate data and the possibility to interactively explore it. While pattern recognition is a strength of
the human visual system, it is also a strength of the auditory system. Inspired by the integration of the visual and auditory
perception in everyday life, we introduce an audio-visual analytics design named Parallel Chords combining both visual and
auditory displays. Parallel Chords lets users explore multivariate data using both visualization and sonification through the
interaction with the axes of a parallel coordinates plot. To illustrate the potential of the design, we present (1) prototypical
data patterns where the sonification helps with the identification of correlations, clusters, and outliers, (2) a usage scenario
showing the sonification of data from non-adjacent axes, and (3) a controlled experiment on the sensitivity thresholds of
participants when distinguishing the strength of correlations. During this controlled experiment, 35 participants used three
different display types, the visualization, the sonification, and the combination of these, to identify the strongest out of three
correlations. The results show that all three display types enabled the participants to identify the strongest correlation — with
visualization resulting in the best sensitivity. The sonification resulted in sensitivities that were independent from the type of
displayed correlation, and the combination resulted in increased enjoyability during usage.

Keywords Audio-visual analytics · Sonification · Parallel coordinates · User evaluation

1 Introduction

In the context of analyzing multivariate data, visual analytics
has proven to be effective for the detection of patterns and
trends between variables. Parallel coordinates [44, 88] is a
widely used visualization technique for analyzing multivari-
ate data, where individual variables are presented as vertical
axes that are evenly spaced parallel to each other. Data items
are represented by polylines that intersect the axes at the
value of the respective data item.

Even though the parallel coordinates technique is well-
suited to visualize multivariate data, a number of challenges
exist [37]. The individual axes of parallel coordinates being
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positioned next to each other allow one variable to be
compared to at most two direct neighbors at a time. Axis
order algorithms canbe applied to set the optimal axis order to
reveal a certain pattern, e.g., clusters [7], but the problem still
persists when making more bivariate comparisons than the
parallel coordinates plot allows. To overcome this limitation,
parallel coordinates and other multivariate visualizations are
often part of a multiple-view system to provide additional
perspectives of the data. One approach is to display several
parallel coordinates plots simultaneously as a matrix, show-
ing all pairwise relations for the variables of the dataset [38].
Another approach is to accompany the parallel coordinates
plot with bivariate visualizations. This allows displaying
more variable comparisons within the same context, and can
also make use of the strengths of different types of visual-
izations. For example, Li et al. [54] conducted a comparative
user experiment for scatter plots and parallel coordinates and
found that users can distinguish twice as many correlation
levels in a scatter plot than in a parallel coordinates plot,
and that users overestimate negative correlations with paral-
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lel coordinates. On the other hand, Kanjanabose et al. [47]
showed that participants performed betterwith clustering and
outlier detection tasks when using a parallel coordinates plot
compared to using a scatter plot. This shows that different
types of visualizations can complement each otherwhen used
in conjunction. However, presenting several types of visual-
izations simultaneously in a multiple-view system can lead
to a loss of context and focus when switching between the
views [59]. It also leaves less space for each visualization on
the display, which especially impacts displays with limited
screen size. Therefore, other ways of conveying additional
bivariate information for multivariate visualizations should
be explored. The added information and perspectives could
instead be conveyed by another modality, such as the audi-
tory, which has specific differences from the visual modality.
Numerous studies on sonification as a technique for auditory
representation of data have demonstrated its potential for the
recognition of coherent patterns [21, 31, 60].

In this article, we investigate how the addition of the audi-
tory modality through sonification can be beneficially used
in conjunction with a parallel coordinates visualization by
creating an audio-visual analytics design, named Parallel
Chords. This is demonstrated by presenting how the sonifica-
tion would convey different prototypical patterns, while also
demonstrating it in a usage scenario. As a first step to validate
the approach, a controlled experimentwas conducted towards
the most foundational type of patterns, i.e., correlations (pos-
itive and negative), to evaluate the sensitivity thresholds and
experience of participants when distinguishing similar cor-
relations through visualization, sonification, and by using
both in combination. Through the demonstration of an audio-
visual analytics design and analysis of experiment results, the
following contributions are presented:

• An audio-visual analytics design for parallel coordinates,
which is demonstrated with the use of prototypical data
patterns and a usage scenario.

• Quantitative and qualitative evaluation results of partic-
ipants distinguishing similar correlations using parallel
coordinates, an auditory scatter plot, and the combined
usage of both.

The results of this studywill support both the visualization
and the sonification communities to better understand the
implications of audio-visual designs, what to consider during
sound design, and in what context to combine sonification
and visualization.

2 Related work

Previous research from both the visualization and the sonifi-
cation areas is relevant to this work. We present an overview

of visualization idioms for multivariate data, and specifically
what solutions exist to mitigate the challenges of the paral-
lel coordinates technique. We present how sonification can
complement visualization, and what audio-visual analytics
designs currently exist.

2.1 Visualization of multivariate data

Visualization idioms for multivariate data focus on datasets
that encompass a large number of items, three or more
quantitative variables, and no further relational information
between the items. Numerous visualization idioms have been
designed for such data [80, 87] and we will compare parallel
coordinates plots to six idiom families. Axis-based idioms
represent data items in a layout that maps variables to axes.
With points, the scatter plots for each pair of variables are
shown together in a grid, the scatter plot matrix, or sequen-
tially one after another, the grand tour [4]. Both arrangements
of the scatter plots depict each data item as multiple point
marks either spatially or temporally and require the user to
mentally connect the marks for multivariate patterns. In the
parallel coordinates plot [44, 88], each data item is repre-
sented as one polyline, which, at least in principle, visually
connects all the variable values. A radar plot is compara-
ble to the parallel coordinates plot but places the axes in a
radial arrangement. Polyline-based idioms allow the analy-
sis of bivariate patterns best between neighboring axes. All
axis-based idioms preserve the quantitative distribution of
the variable values but they can suffer from overplotting.
Table-based idioms such as Table Lens [66] simply follow
the visual layout of a spreadsheet’s rows and columns while
densely encoding data values, e.g., as a bar chart. With inter-
active sorting, the user can identify patterns between two or
more variables. They avoid overplotting but the y-position
does not directly express a variable value. A third family
of idioms algorithmically transforms multivariate data to
simple visual marks. Dimension reduction algorithms like
multi-dimensional scaling, primary component analysis, or
stochastic neighbor embedding can reduce the dataset to the
two dimensions of a scatter plot [76]. The RadViz [42] or
Dust & Magnet [93] idiom applies a force-based metaphor
so that point marks for items are positioned closer to the vari-
able marks, for which they have a large value. The Andrews’
curves [2] idiom displays a multivariate item as the plot
of a finite Fourier series. Glyph-based idioms such as pro-
file glyphs, stick figures, or Chernoff faces represent each
data item with a visual entity that encodes multiple vari-
ables to the visual channels of one or more visual marks [8,
34]. Transformation-based and glyph-based idioms focus on
the holistic representation of the data items whereas parallel
coordinates also display patterns across one or more vari-
ables. Pixel-based idioms such as VisDB [49] and nested
visualizations such as mosaic plots and dimensional stacking
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[52] rely on some relational information such as a temporal
dimension or categories to arrange the multivariate data and
are thus not directly comparable to parallel coordinates.

2.2 Enhancements of parallel coordinates

While parallel coordinates plots provide an overview of mul-
tivariate data expressing all variable values along scaled axes,
they have limitations from overplotting and can play their
strengths best for bivariate patterns between two variables
that are displayed on neighboring axes. These limitations can
be addressed, to some extent, by interactively filtering items
and changing the order and direction of axes. The effects of
overplotting can be mitigated by histograms on top of axes,
semi-transparent polylines, rasterization that preserves line
orientations [58], or showing clusters of items as bands [33,
61]. Various algorithmic approaches, e.g., [3, 20, 64, 92],
propose an axes order that reduces overplotting or better
reveals patterns such as clusters. Blumenschein et al. [7]
identified 32 reordering approaches and found out that there
is a trade-off between these goals. Furthermore, the users’
background knowledge about the data and the task may still
call for a different combination of variables to be analyzed
together.

Other visualization idioms derived from parallel coordi-
nates abandon the sequential arrangement of the axes in order
to better show bivariate patterns. TimeWheel [81], 3D Time-
Wheel [82], andCMRPC [46] place one axis in the center and
connect it with all other axes that are positioned around it. In
the 2D version, the axes cannot be placed parallel. Lind et al.
[55] replicated these axes and arranged them as polygons
around a central variable. These show all bivariate combi-
nations of variables with a pair of parallel axis in 2D. The
Parallel Scatterplot Matrix [85] can be interactively rotated
from a scatter plot matrix into a multi-row parallel coordi-
nates plot. The Parallel Coordinates Matrix [38] combines as
many rows of parallel coordinates plots as needed to display
all pairs of variables as neighbors.Claessen andvanWijk [15]
give users the flexibility to create custom layouts by drawing
and linking axes on a 2Dcanvas.All these derived approaches
have drawbacks similar to the scatter plot matrix: the data
item is no longer represented by a single visual mark and the
subdivision of display space decreases the visual resolution.
Some of the approaches are further restricted by rotated axes
or a 3D projection.

2.3 Sonification and audio-visual analytics

Sonification is the auditory equivalent to visualization,
i.e., the transformation of data into sound or the mapping
of data characteristics to auditory channels [39, 65]. Soni-
fication can be used for data exploration and there are a
number of studies that evaluate auditory graphs [30, 57,

60, 79]. It has also been demonstrated that sonification can
support visual perception [1, 70, 71], and various auditory
channels can be successfully linked and related to visual
channels [17, 21, 27, 57, 86]. Sounds, in sonification, can
convey a multitude of information to listeners quickly [83],
without adding visual clutter [13]. This suggests that soni-
fication and visualization can fruitfully be combined, and
previous studies have explored this combination [11, 21, 23,
25, 30, 41, 48, 57, 60, 67, 69]. While these studies indicate
that using sonification together with visualization supports a
user in various data analysis tasks, also theoretical bridges
between the visualization and the sonification communities
exist. Theoretical constructs from visualization research —
the “spatial substrate,” the “mark,” and the “channels” [59]
— have been adopted to sonification. The theoretical frame-
work characterizes sonification using time as its “substrate”
and zero-dimensional and one-dimensional “auditorymarks”
that use “auditory channels” to control their auditory appear-
ance [24, 26].

Auditory scatter plots, where data attributes are mapped
to note onset, duration, and pitch, can provide informa-
tion resulting in almost identical estimates of correlation
magnitude and correlation coefficients as for visual repre-
sentations [31]. Judgments of correlation magnitude are also
similarly affected by single outliers in visual and auditory
scatter plots [31]. Auditory scatter plots where density levels
havebeenmapped to auditory channels have also beenproven
to successfully provide information about density levels as
well as data distribution and clustering [68, 91]. Sonification
can also be used to support the perception of visually dense
areas in cluttered visual displays, both scatter plots and par-
allel coordinates representations, by sonifying density levels
as well as different datasets in the visual representation [72].
Furthermore, sonification can be used together with parallel
coordinates plots for perception-based classification of indi-
vidual data records in a relational dataset [62, 63]. Finally,
sonification has been proposed to be able to complement par-
allel coordinates in terms of visual cluster overlapping, visual
representations in general for high dimensionality data, chal-
lenges for the visual perception in color distinction, and
limitations by screen resolution [36]. Based on these find-
ings we argue that sonification can be successfully used as
a supplement to visual representations, and can be used to
discover classes of data and data features (see further discus-
sions in [30]).

3 Parallel chords

To explore the combination of sonification and visualization
in the context of parallel coordinates, workshops were con-
ducted to decide on the final design, which are described
in Section 3.1. Based on these discussions, we created an
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audio-visual analytics design named Parallel Chords. It
enables users to explore multivariate data through both visu-
alization and sonification by interacting with the axes of a
parallel coordinates plot. Through the Parallel Chords inter-
face, the user can select two axes by sequentially clicking
on two axis labels (see Fig. 1). The variable selected first is
mapped to the temporal onset of auditory marks in the sonifi-
cation, and the variable of the second selected axis is mapped
to their pitch.As soon as the user has selected the second axis,
the interrelationship between the two axes is sonified. After
this, two new axes can be selected for comparison.

This section first summarizes our design process and then
presents the visualization and sonification components of
Parallel Chords in detail using the constructs of the unified
theoretical framework for audio-visual analytics designs by
Enge et al. [24, 26]: Visual marks are placed in space (the
substrate of visualization) using channels to encode informa-
tion.Auditorymarks (i.e., the individual sounds) are placed in
time (the substrate of sonification) using auditory channels
to encode information. In Parallel Chords each data item
is represented both as a visual polyline and as an auditory
mark that uses two auditory channels to encode information:
the auditory mark’s onset time and its pitch. In Section 4, we
demonstrate the design by applying it to commonly occurring
patterns in visual analytics, and in Section 4.1, we present a
usage scenario demonstrating how the design can be used
to convey information about non-adjacent axes in a parallel
coordinates plot.

3.1 Design process

To investigate how sonification could support a parallel coor-
dinates visualization, workshops were conducted where two

visualization researchers and three sonification researchers,
which are co-authors of this article, were interviewed as
a group around how sonification could be used to benefit
the visualization. The first workshop was an ideation work-
shop to identify challenges and generate ideas related to
the integration of sonification with parallel coordinates. The
second workshop, again within our group, was a concept
workshop discussing different prototypical implementations
that tackle the challenges of parallel coordinates identified
in the ideation workshop. Both these workshops were led
by the two first authors of this article and were conducted
as semi-structured group interviews. Additionally, we con-
ducted individual workshops with one interaction design
researcher and one visualization researcher with a specific
interest in parallel coordinates. These meetings were con-
ducted as semi-structured interviews as well and provided
an external and well-informed perspective onto our design
ideas.

The notes that were taken during all workshops were
categorized by the two first authors to summarize the out-
come. The main take-aways from the ideation workshop
was that sonification had the possibility to prevent specific
shortcomings of parallel coordinates. One of the identified
shortcomings concerned visual clutter due to the overplotting
of an abundance of data items.Another challengewas the axis
ordering problem and the limitation of pair-wise comparison
of axes,which led to non-adjacent axes not being comparable.
A number of sonification mapping strategies were created
to concretize the ideas from the ideation workshop, which
would aid in the shortcomings of the visualization. These
mapping strategieswere realized as sonification concepts and
were demonstrated at the concept workshop.

The mapping strategies focused on the two main chal-
lenges of parallel coordinates that were highlighted in the

Fig. 1 Illustration of the audio-visual analytics design Parallel Chords
when exploring the relationship of non-adjacent axes in a parallel coor-
dinates plot. A user selects one axis (1) which is mapped to the temporal
onsets of individual sounds in the sonification, and a second axis (2)

which is mapped to the pitch of the individual sounds. In this case, the
sonification conveys a positive correlation between axes A and C to the
user represented via increasing pitches as time progresses
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ideation workshop, namely overplotting and axis ordering.
The mapping strategies for mitigating axis ordering focused
on representing several data dimensions at the same time or
in quick succession to get an overview of the dataset through
the sonification. By mapping each attribute in a dataset to an
individual auditory channel, it would enable a user to become
aware of patterns in the dataset by listening to changes in the
sonification. Another mapping approach was to use the same
sonification mapping for each attribute but spatialize them to
the corresponding axis in the parallel coordinates plot to be
able to distinguish between them.

The mapping strategies for overplotting focused on repre-
senting the lines in the parallel coordinates plot in an auditory
manner to aid in detecting patterns in a large dataset.One sug-
gested mapping strategy was to convey the angle of the lines
in a parallel coordinates plot through the sonification to per-
ceive correlations in the dataset. Another mapping strategy
involved a dynamic line selection, where lines in the parallel
coordinates plot would only be sonified if they diverged from
the general pattern between two axes.

While many of the mapping strategies had the potential
of complementing a parallel coordinates visualization, we
decided to use an established sonification mapping approach
to act as an initial exploration of the combined design. Based
on the discussions during the workshops, we decided for
combining and studying mappings that are well researched
individually, also due to the fact that we are investigating a
relatively new field with this study. Therefore, the sonifica-
tion was created to work as an auditory equivalent of a scatter
plot, which is an established and well researched technique
in the sonification community [30, 31, 57, 60, 79].

3.2 Visualization design

The visualization design consists of a standard parallel coor-
dinates plot which was created by using the Data-Driven
Documents (D3.js) information visualization library [9]. The
parallel coordinates plot contains generic axis labels with-
out tick marks to put focus on the data patterns themselves
rather than specific data values. The lines are colored in
black and were drawn with 30% opacity to allow blending of
the lines. Users explore different variable relations by drag-
ging the axes of the parallel coordinates plot. As this design
will be used in a controlled experiment that investigates the
identification of global data patterns such as correlations or
outliers, it does not provide interaction for filtering or details
on demand. This includes brushing and zooming of axes that
filter the data range of an axis and highlighting data lines that
give additional details of each data item.However, these com-
mon types of interactions should be provided when applying

the design in a real-world use case and evaluating it in future
application-oriented studies.

3.3 Sonification design

While the parallel coordinates plot displays all attributes at
once in a certain axis order, the sonification works as an
auditory scatter plot of two user-selected attributes. Onset
time is used to convey the values of the first selected axis,
where lower values lead to earlier onset times for the respec-
tive auditory mark. This is scaled in relation to the value
range of the variable, such that value gaps in the data are
noticeable as pauses. The overall playback duration of the
sonification is set to range between one and two seconds.
The auditory channel pitch is used to represent the values of
the second selected axis, where a higher data value results in
a higher pitch for the auditorymark, creating a positive polar-
ity mapping. The pitch ranges from MIDI note number 55
(G3, fundamental frequency 196Hz) to 91 (G6, fundamental
frequency 1567.98Hz). Together with the onsetmapping, the
change of pitch over time enables the user to detect auditory
patterns in the data. A positive correlation between two vari-
ables, for example, would result in a sequence of auditory
marks with later marks having higher pitch than earlier ones.
In the course of this article, the axis that is used to sort the
onset times will be called the time axis, and the axis that is
used to sort the pitches of the individual auditory marks will
be called the pitch axis.

The synthetic model of a mallet instrument comparable to
a marimbaphone is used for the sonic representation of the
auditory marks. The sound design was chosen for its clear
distinction of temporal onsets, short decay time, and aesthetic
qualities. The clear temporal onset of amallet instrument aids
in discerning individual data points when played in rapid suc-
cession. The short decay times of the individual sounds help
to avoid temporal clutter during the sonification. If the cho-
sen instrument needed a longer decay time to soundplausible,
the individual sounds would soon mask each other. Using a
sound design that resembles a real instrumentwas a dedicated
decision. The timbre of a real instrument could be perceived
as more aesthetic and therefore could increase its accept-
ability in comparison to the characteristics of a pure sine
wave. Choosing such a sound design is also in line with all
four design criteria for effective sonification design recently
presented by Groß-Vogt et al. [35]. The four criteria are (1)
to use easily perceptible sounds, (2) not to contradict data
metaphors, (3) to follow a natural mapping, and (4) to use
sounds appropriate to the task. The sonification model was
implemented using SuperCollider [56], a real-time sound
synthesis software environment that is commonly used for
sonification purposes [12].
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4 Prototypical patterns

To demonstrate Parallel Chords, we present commonly
occurring types of data patterns [37] to serve as examples
for the design. These patterns are positive and negative cor-
relations, clusters, outliers, and sine. A compilation of the
prototypical patterns in a parallel coordinates plot and in an
illustrated auditory scatter plot can be seen in Fig. 2. The
parallel coordinates plot and scatter plot create distinctly
different outputs for each type of pattern. Since the soni-
fication adopts an auditory scatter plot approach, different
perspectives of the data can be gained by using both the
visualization and the sonification simultaneously. An audio-
visual demonstration of the patterns shown in Fig. 2 and
additional examples can be viewed in Video 1.1 The video
includes more variations for each type of pattern compared
to what is shown in Fig. 2, and also includes versions of the
patterns where noise has been added to convey how the soni-
fication behaves for less clear patterns. The video displays
all of the patterns sequentially and uses an arrow to guide the
viewer during the playback of the sonification. The rest of
this section describes each type of pattern with respect to its
statistical meaning, what variations of the pattern exist, how
it could be identified with the audio-visual design, and how
a user could benefit from using Parallel Chords to detect the
patterns.
Correlation Correlation conveys to which degree two vari-
ables are linearly related to each other, ranging from perfect
negative to perfect positive correlations. Positive and neg-
ative correlations are polar opposites from a mathematical
perspective and create distinctly different types of patterns
in a parallel coordinates plot. A perfect positive correlation is
visually displayed as parallel lines between two axes, while a
negative correlation is displayed in the shape of an “X” or dia-
bolo [54]. Since the sonification has an auditory scatter plot
approach, the two types of correlations are more alike, where
a positive correlation is identified as a sequential increase of
pitch of the auditory marks, while a negative correlation is
identified as a sequential decrease in pitch. To determine the
strength of a correlation, positive or negative, a user would
analyze how sorted the auditory sequence is regarding pitch.
The sonification aids in estimating correlations by offering a
second perspective. The exploration of positive and negative
correlations is what was studied in the controlled experiment
of this study, presented in Section 5.

Clusters Clusters are groups of data items that share sim-
ilarities with regard to at least one of their variables. In a
parallel coordinates plot, a cluster is visually represented as a
structure of lines that appear spatially grouped together, and

1 Video of prototypical patterns: https://www.youtube.com/watch?
v=T2n7JV9Qvog

usually creates several distinct visual patterns when many
clusters are present. Auditory clusters can either be identified
through the temporal or pitch grouping in the sonification,
depending on the characteristics of the cluster. If clusters
are present on the pitch axis, the distinction of the clusters
is identified by a sudden and bigger difference in pitch. If
clusters are present on the time axis, they are identified by a
pause that separates groups of auditory marks. If clusters are
occurring on both axes, a combination of these two effects is
perceived. Since the two mappings of the sonification could
be easier to distinguish between, compared to the visualiza-
tion, it could support the user in detecting and identifying
clusters in the dataset.

Outliers An outlier is characterized as a data item that dif-
fers substantially from the rest of the dataset. This can be
due to it being outside of the general range of values in the
dataset, or that it differs from the pattern that is displayed
when comparing two variables with each other. An outlier is
identified with the sonification by listening for a deviation in
the overarching pattern of the dataset. Similarly to clusters,
if an outlier is present on the pitch axis, it is identified by a
sudden and big difference in pitch. If an outlier is present on
the time axis, there will be a temporal pause separating the
outlier from the rest of the auditory marks. Since the auditory
modality has a high sensitivity to both temporal changes and
changes in pitch [94], the sonification supports the user in
detecting outliers in the dataset.

Sine Some types of patterns could be easier to identify audi-
bly due to their inherent development over time, such as
sine functions. Although these types of patterns are not as
commonly occurring in real-life multivariate data, it gives
an example of how the temporal perspective of the sonifica-
tion can contribute to the analysis of the data. When visually
inspecting the pattern of a sine function through a parallel
coordinates plot, one might not associate the image with a
sine function. Through the sonification, however, there is a
signature sound of a periodical increase and decrease of pitch
over time. Furthermore, the number of periods can be iden-
tified by counting how many times the auditory pattern is
repeated.

4.1 Usage scenario

The presented prototypical patterns have demonstrated the
use of Parallel Chords for commonly occurring patterns in a
parallel coordinates plot with two axes. The following usage
scenario illustrates how Parallel Chords could be used in
practice by a fictional analyst, Dr. B., exploring botanical
data. While this fictional user story can not validate our
design, it serves to clarify our vision for such a tool. Dr. B. has
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Pos. Correlation Neg. Correlation Clusters Outliers Sine

Pitch

Time

Fig. 2 Prototypical patterns: positive and negative correlations, clus-
ters, outliers, and, additionally, a sine function. The patterns are
displayed in a parallel coordinates plot and in an illustrated auditory
scatter plot to demonstrate the audio-visualmapping ofParallel Chords.
While the left axes of the individual parallel coordinates plots are used

as the time axes of the auditory scatter plots, the right axes of the parallel
coordinates plots are used as the pitch axis. A positive correlation, there-
fore, results in a sound sequence of individual tones rising in pitch over
time. See Video 1 to listen to the sonification of the patterns, including
more variations and noisy versions

musical experience and is a data expert that has prior experi-
ence with using sonification and visualization to analyze and
explore her data. She wears headphones and uses a standard
screen in her office to interact with Parallel Chords. The sup-
plemental material provides a video of the interactions that
are relevant in the usage scenario of Parallel Chords.2

At the beginning of her analysis, Dr. B checks if the system
is up and running by clicking axis D and E. She chose those
two axes as this is were she sees two distinct clusters that are
not overlapping. Therefore, she expects to hear a cluster of
lower tones in the beginning, then a pause and a cluster of
higher notes afterward. The system seems to work and Dr.
B continues her investigation. From her previous experience
using Parallel Chords, she knows that sometimes patterns
can be more audible than visible. She is interested in the
relationship between axis A and B and listens to them. The
sonification reveals the presence of three clusters. After Dr.
B. has heard the three clusters, she takes a closer look and
now also sees them. For more detailed analysis, she decides
to use a scatter plot at a later point and continues with her
analysis using Parallel Chords.Dr. B is expecting axis A and
D to hold clusters but does not know how many exist. From
her experience, she knows that the relationship between A
and D is only relevant if the two axes hold three or more clus-
ters with each other. To quickly check the number of clusters
between the two non-adjacent axes, without changing the
visual view onto her data, Dr. B. sonifies their relationship

2 https://www.youtube.com/watch?v=BYZVYHx56P8 - The dis-
played data is the iris dataset [29]

and hears three distinct clusters. She now wants to under-
stand the relationship better and drags axis D next to axis A
to visualize their connection. The visualization helps her to
understand that the lowest cluster is strictly separated from
the other two, while the two remaining clusters slightly over-
lap each other.

In our scenario, Dr. B. listened to two visually adjacent
axes (A and B) because she suspected a pattern that was
not clearly visible to her. The sonification led her to take
another look directed toward clusters which made her see
them. We expect such an interaction between visualization
and sonification to be dependent on prior experience and
gained intuition using a tool. To better understand the occur-
renceof suchphenomena, follow-up studieswill be necessary
as they are out of the scope of this article. Dr. B. also used the
sonification in a complementary manner with the visualiza-
tion by sonifying non-adjacent axes (A and D). By using
only the sonification, non-adjacent axes can be explored
separately from the visualization to aid the user in making
multiple bivariate comparisons for the same axis, something
that is otherwise a shortcoming with parallel coordinates.
This can also be useful if an axes order algorithm has been
applied to the dataset since axes comparisons can be made
by the user while keeping the axis ordering of the visualiza-
tion untouched. The user can explore each combination of
axes with the sonification, and choose to confirm or sharpen
their impression using the visualization by dragging the axes
together. The user can also alternate between assigning the
two axes of a pair to become either the time axis or the pitch
axis to get an additional auditory perspective.
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5 User evaluation

As a first step to validate Parallel Chords, we performed
a controlled experiment for the most foundational type of
pattern, namely correlations (positive and negative). The par-
ticipants were asked to identify the strongest out of three
correlations. This experiment task was chosen to understand
the participant’s ability to correctly interpret the mapping of
the sonification and to study the participants’ sensitivity in
distinguishing small differences in the presented data.

Positive and negative correlations were tested separately
to find potential differences between distinguishing the
strength of the two types of correlations. Participants were
tasked with identifying the strongest correlation using three
display types: Visualization, Sonification, and by using both
inCombination. Visualizationwould be used as a benchmark
for regular use with a parallel coordinates plot. Sonifica-
tion reflects how a user would use Parallel Chords for
non-adjacent axes since there would not be any visual rep-
resentation of the correlations. Combination would reflect
how Parallel Chords is used for adjacent axes with com-
bined visual and auditory representations of the correlations
andwould capture the sensitivity threshold of the participants
when using both modalities at the same time.

5.1 Method

The experiment tasks were structured as “three alternative
forced choice tests.” A parallel coordinates plot with four
axes was presented, where the participant would select which
out of the three axes B, C, or D had the strongest correlation
with axis A. For Visualization, the participant would interact
by dragging the axes, as is commonly done with parallel
coordinates, to compare and select the strongest correlation.
For Sonification, the polylines of the parallel coordinates plot
were not visible and the participant clicked on either axis
B, C, or D to listen to their correlations with axis A. The
time axis for the sonification was always assigned to axis
A, which meant that the participant only needed to assign
the pitch axis to any of the other axes. For Combination,
the participant used the dragging interaction which would
trigger the sonification when an axis was released next to
axisA. It was also possible to click on the currently compared
axis to listen to the sonification again. A screenshot of the
experiment interface can be seen in Fig. 3.

The sensitivity threshold of the participant was measured
using a staircase test design [22, 53], where the difficulty
of the tasks changed depending on the prior responses of
the participant. The difficulty, in this context, relates to the
difference in the correlation coefficient between the correct
axis, which had the strongest correlation with axis A, and the
two incorrect axes, which had a weaker correlation with axis

A. Smaller differences in the strength of correlation result
in a more difficult detection task. The staircase procedure
followed a one-up two-down procedure [53], meaning that
the difficulty would increase after responding correctly two
times in a row, and decrease after responding incorrectly
once. Each increase in difficulty would span two levels of
difficulty, while each decrease would span only one level
of difficulty. Furthermore, the difficulty would increase by
three levels after responding correctly four times in a row
to enable the participant to converge to their individual sen-
sitivity threshold with fewer number of tasks. The staircase
started with a low level of difficulty, i.e., with large differ-
ences between the correct andwrong answers, so that it can be
assumedmost participantswould be able to correctly respond
to the first few examples before reaching their individual
thresholds. One staircase procedure was used for each of the
negative and positive correlation tasks to be able to analyze
the results separately. The positive and negative staircases
were interleaved such that every other task displayed nega-
tive correlations and the tasks in between displayed positive
correlations. Additionally, the task completion times and the
number of interactions needed to submit an answer were
recorded. Qualitative aspects were obtained from a ques-
tionnaire that contained questions to be answered before and
after the experiment, capturing the participant’s subjective
experience when performing the experiment. Pilot tests were
conducted in preparation for the experiment to determine
suitable correlation strengths and the number of tasks for
each participant.

5.2 Datasets

Synthetic data was created to be used in the controlled exper-
iment. Out of the three selectable axes (B, C, D), one axis
would hold a stronger correlation with axis A. Selecting that
axis was the correct answer, and selecting one of the other
two axes, holding a weaker correlation with axis A, was an
incorrect answer. Equations1, 2, 3, and 4 describe the gen-
eration of the vectors v1 − v4 that were displayed on axis
A-D. Vector v1 was always displayed on axis A and vectors
v2 − v4 were randomly assigned to axis B, C, and D.

Axis A, displayed as the left-most axis during the experi-
ment, held the vector v1, a linearly spaced vector holding 300
entries with values between 0 and 1, that had the reference
noise of 7% (defined here as Gaussian noise with σ = 0.07)
added to it. The axis that held the strongest correlation with
axis A (with a Pearson correlation of about 0.95) had the
same properties as axis A, but since it was individually gen-
erated it would not hold identical values. The two other axes
were both individually generatedwith additional added noise
(�σ ), so that they had the same properties but with a weaker
correlation with axis A.
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Fig. 3 The experiment
interface, where the participant
has currently selected the
correlation between axis A and
B as their answer. The task is to
select which out of the three
axes B, C, or D holds the
strongest correlation with axis
A. Using Sonification the 300
polylines were not visible and
the interface only consisted of
the axes and their labels. See the
tutorial video in the
supplemental material for a
video of the example
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where

i = 0, 1, 2, ..., 299

N (μ, σ 2) = normal distribution

σ = reference noise (0.07)

�σ = additionally added noise (0.02 − 20).

The level of �σ determined the difficulty of the tasks.
A lower �σ would result in more similar stimuli, which
increased the difficulty of the task. 20 different levels of
�σ were used to serve as the difficulty levels of the stair-
case test, ranging from �σ = 20% (least difficult) down to
�σ = 0.2% (most difficult). Negatively correlated datasets
were generated in the same manner, only that the selectable
axes had their data entries inverted. Whenever a generated
value happened to be out of range [0–1] due to added noise, a
new random value withμ = i

300 was generated and replaced
with the original one. This was necessary for the datasets not
to become sparsely populated around the edges of the axes
after normalizing them to the same value range in the final

step. The Jupyter Notebook we used to generate the datasets
is available in the supplemental materials.

5.3 Procedure

The experiment procedure took participants around one hour
to complete andwas divided into five parts: pre-test question-
naire, tutorial, training, test, and post-test questionnaire (see
Fig. 4). The experiment started with the participant filling in
pre-test questions in a paper-based questionnaire concern-
ing their age, gender, and possible perceptual impairments.
Self-rated knowledge of the concept of correlation, their
familiarity with parallel coordinates, their musical experi-
ence, and their familiarity with sonification were collected
through a 5-point Likert scale. The experiment questionnaire
can be viewed in the supplemental materials. The experiment
proceeded on the computer with a tutorial on how to analyze
correlations with visualization and sonification, respectively,
andonhow to interactwith the interface to compare thediffer-
ent axes. Advice for distinguishing the strongest correlation
was given for both the visualization and the sonification. The
advice for visual analysis was to look for the “uniformity of

Fig. 4 The five parts that were included in the experiment procedure,
including how long each part took to complete. The questionnaires were
done on paper. The tutorial, training, and test were done on a computer
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the patterns.” The advice for auditory analysis was to lis-
ten to “how sorted the sounds are regarding their pitch.”
At this stage, the participant was also able to confirm that
the sound volume was set at an appropriate level based on
the tutorial video, which had the same sound volume as
in the training part and the test. The tutorial video can be
viewed in Video 33 which shows the experiment interface
for Sonification and Combination. At the end of the tutorial,
the participant was informed that all user inputs would be
recorded for the training and test session and that this data
would be stored, analyzed, and reported anonymously. No
audio or video recordings of the participants were done, and
the participant was able to leave the evaluation session at any
point.

A training session followed, familiarizing the participant
with the experiment interface by providing the same tasks
as in the test, while also giving feedback if an answer was
correct or incorrect. If the answer was incorrect, the partic-
ipant would get further attempts at the task until they were
correct. 12 training tasks were presented, with four train-
ing tasks for each display type, starting with Visualization,
followed by Sonification, and finally using both in Combi-
nation. The test session started after the training, containing
30 tasks for each display type, with a total of 90 tasks for
the three display types. The presentation order of the display
types was structured with a Latin square design, such that the
participants would be presented with three different orders.
The three possible orders were used equally with the par-
ticipants to even out any learning or order effects. The tasks
alternated between negative and positive correlation for every
task, with 15 tasks for each type of correlation. When the test
was completed, a post-test questionnaire was filled in by the
participant which included questions about the experience of
using the different display types. An open-ended interview
concluded the evaluation to complement the ratings made in
the questionnaire, where the participant was asked to share
details of their experience after performing the test.We report
on the most frequent comments in Section 6.2.

5.4 Apparatus and architecture

The experiment was performed in a closed-off room on a
standard desktop computer setup. The setup consisted of
a 25′′ computer screen with a resolution of 2560 × 1440
pixels, placed at arm’s length from the participant’s seating
position. A pair of Beyerdynamic DT 770 PRO headphones
was used for sound playback. A mouse was used to navigate
the website displaying the experiment interface. The website
was presented in full-screen mode to avoid any visual dis-
tractions. The experiment was performed in three separate
locations but with the same setup.

3 Tutorial video: https://www.youtube.com/watch?v=fp6dOphJ5FI

To connect the sonification with the visualization we
used web technologies with a client-server architecture.
The server, implemented with Node.js, performs the client
communication by exchanging JSONmessages via theWeb-
Socket protocol and communicates with SuperCollider by
sending messages using the Open Sound Control [90] proto-
col. On the client side, the experiment platform was built in
TypeScript using the Angular framework.

5.5 Participants

35 participants took part in the controlled experiments (13
female, 19 male, 2 non-binary, 1 gender apathetic) which
ranged from 20 to 60 years old (average age of 32.26, SD =
9.71). The self-rated knowledge of the participants regarding
the concept of correlation, their familiaritywith parallel coor-
dinates, their musical experience, and their familiarity with
sonification can be seen in Fig. 5. Overall, the participants
had more knowledge in correlation and parallel coordinates
compared to their knowledge in sonification and musical
experience.

6 Results from the user evaluation

Statistical analysis was performed on the observed sensi-
tivity thresholds and on the participants’ task completion
times. According to two different normality-tests [18, 19,
77], neither sensitivity threshold nor task completion time
consistently follow normal distributions. For further anal-
ysis, we used a Friedman test [32] and Wilcoxon signed
rank tests [89]. Holm-Bonferroni correction [43] for multi-
ple comparisons was used where necessary. In addition to the

Fig. 5 Self-rated knowledge of the experiment participants through a
5-point Likert scale, where 1 corresponded to a low level of knowledge
in the subject, and 5 corresponded to a high level of knowledge. See the
specific description of the scale items in the evaluation questionnaire as
part of the supplemental material
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significance analysis, the effect size measure “Cliff’s Delta”
(�) [16] is reported.4

The p-values and�-values of the analysis are displayed in
Table 1. They provide the results for both main effects (the
type of correlation and the type of display) and all poten-
tially interesting pairwise comparisons of conditions. For
each participant, both the sensitivity threshold and the task
completion time metrics were calculated by averaging the
last eight of fifteen responses, i.e., the second half of each
staircase. Even though some participantsmight not have con-
verged towards their individual sensitivity threshold within
the first half of each staircase, we confirmed that all results
for the sensitivity thresholds reported in Table 1 are robust.
The p-values and �-values would not change in a relevant
way if one of the three different metrics was applied: (1) only
the last value of each staircase, (2) the average over the last
4 responses, and (3) the average over all 15 responses.

Thematic analysis [10] was performed on the notes from
the interviewswith the participants by coding the notes based
on a number of topics. These topics included comments on
their approach for making a decision during the test, how
they perceived the sonification, and for which condition they
were most or least confident. The comments in each category
were then counted by howmany times a specific opinion was
mentioned, where the most frequent comments are presented
as results in Section 6.2.

6.1 Quantitative results

This section presents the quantitative results for the par-
ticipants’ sensitivity thresholds when they distinguished
different strengths of correlations, results with respect to
task completion times, and reflections on the influence of
prior experience on the results. Kruskal-Wallis tests [50] did
not reveal any significant differences regarding the order of
presentation of display types (sensitivity: p > 0.16; task
completion time: p > 0.08).

6.1.1 Sensitivity threshold

We found significant main effects of the correlation type
(p � 0.01) and the display type (p � 0.01) on the partic-
ipants’ sensitivity thresholds and no significant interaction
between the two factors (p = 0.59). Pairwise comparisons
in Table 1 show differences between correlation types within
each display type, and between display types within each
correlation type.

Main effect 1: correlation type To study the main effect
of the correlation type, we accumulated the data for the

4 �-values around 0.11 can be considered as “small effects,” �-values
around 0.28 as “medium effects,” and �-values around and above 0.43
as “large effects” [84].

Table 1 p-values andCliff’sDelta values for all comparisons regarding
the sensitivity thresholds of participants

Comparisons p �

Main effect 1 Neg Pos �0.01 −0.3

Main effect 2 Vis Son �0.01 −0.69

Son Combi �0.01 0.63

Vis Combi 0.07 −0.11

Pairwise Vis Neg Vis Pos < 0.01 −0.45

Son Neg Son Pos 0.28 −0.09

Combi Neg Combi Pos < 0.01 −0.40

Vis Neg Son Neg �0.01 −0.83

Vis Neg Combi Neg 0.15 −0.19

Son Neg Combi Neg �0.01 0.78

Vis Pos Son Pos < 0.01 −0.57

Vis Pos Combi Pos 0.24 −0.10

Son Pos Combi Pos < 0.01 0.48

The metric used for calculation is the average of the last 8 out of 15
responses in each staircase. “�” means smaller than 10−5 and “<” is
smaller than 10−3

display type. The correlation type influenced the partic-
ipants’ sensitivity threshold significantly (Main Effect 1:
p � 0.01,� = −0.3). Being presented with negative cor-
relations, the participants reached a lower threshold (i.e.,
they had better sensitivity) than with positive correlations
displayed to them.

Main effect 2: display type To study the main effect of the
display type, we accumulated the data for the correlation type
and ran a Friedman test (p � 0.01), followed by Wilcoxon
signed rank tests for the three pairwise comparisons. While
there is no significant difference between Visualization and
Combination (p = 0.07, � = −0.11), both of them signifi-
cantly differ from Sonification (Vis: p � 0.01, � = −0.69;
Son: p � 0.01, � = 0.63).

Interaction Using an aligned rank transform [40] enabled the
application of a repeated measures two-way ANOVA, which
did not reveal any interaction between the independent vari-
ables “Correlation type” and the “Display type” (p = 0.59)
[5, 28]. In line with this result, the distributions show parallel
trends for positive and negative correlations, i.e., the display
type affects both correlation types similarly (see Fig. 6).

Pairwise comparisons Within the two display types Visual-
ization and Combination a Wilcoxon signed rank pairwise
comparison revealed a significant difference between nega-
tive and positive correlations (Vis: p < 0.01, � = −0.45;
Combi: p < 0.01, � = −0.40). Using Visualization and
Combination participants were able to distinguish signifi-
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cantly smaller differenceswhenever theywere presentedwith
negative correlations. For Sonification, a pairwise compari-
son revealed no significant difference between negative and
positive correlations (p = 0.28,� = −0.09).

Within the group of negative correlations, pairwise com-
parisons revealed significant differences between Visualiza-
tion and Sonification (p � 0.01,� = −0.83), between
Sonification and Combination (p � 0.01,� = 0.78), but
not between Visualization andCombination (p = 0.15,� =
−0.19).

Within the group of positive correlations, pairwise com-
parisons revealed significant differences between Visualiza-
tion and Sonification (p < 0.01,� = −0.57), between
Sonification and Combination (p < 0.01,� = −0.48), but
not between Visualization andCombination (p = 0.24,� =
−0.10).

6.1.2 Task completion time

Regarding the participants’ task completion times, we found
a significant main effect only of the correlation type (p �
0.01,� = −0.18). The difference is small and is domi-
nated by the results of Visualization and the Combination
conditions. None of the other comparisons are robust against
changing the metric from the average of the last 8 values. In
most cases other metrics would lead to not significant differ-
ences and small effect sizes, hence, we do not consider them
reportable. Table 2 shows the medians and standard devia-
tions of the participants’ task completion times, all being in
similar ranges.

6.1.3 Self-rated knowledge analysis

In the questionnaire accompanying the experiment, partici-
pants rated their prior experience regarding four topics: the
concept of correlation, parallel coordinates plots, their musi-
cality, and the method of sonification (see Fig. 5).

Whether prior knowledge was affecting the sensitivity
threshold of the participants was studied by comparing
groups of participants with low experience to groups with
high experience. The grouping was done such that the data
would be distributed as balanced as possible between the
two groups.5 A visual comparison of box plots and the anal-
ysis of Cliff’s Delta values revealed that the only condition
potentially affectedwasSonification for negative correlations
(� = −0.35 for sonification experience, −0.3 for musical
experience, −0.14 for experience with parallel coordinates,
and −0.36 for correlation experience). All other effect sizes
were too small to be considered relevant. As the sample size
of the two compared distributions is small the reliability of

5 Grouping for correlation ratings 2|3 vs. 4|5; parallel coordinates 1|2
vs. 3|4|5; musical experience 1|2 vs. 3|4|5; sonification 1|2 vs. 3|4|5.

Table 2 Median values for sensitivity thresholds and task completion
times ± their standard deviations for the six different conditions

Condition Sensitivity
thresholds [�σ ]

TC-times [s]

Visualization Neg 0.8 ± 0.4 14.6 ± 5.9

Pos 1.5 ± 2 18.5 ± 10.3

Sonification Neg 3.4 ± 3.4 14.8 ± 4.9

Pos 3.9 ± 3.8 17 ± 5

Combination Neg 1.1 ± 0.5 16.3 ± 4.8

Pos 2 ± 1.8 18.7 ± 8.9

The metric used for calculation is the average of the last 8 out of 15
responses in each staircase

these results is vague. Therefore, the phenomenon we see in
the data can only be considered an indication of a possible
effect.

In addition to the grouping of sensitivities, a global clus-
ter analysis of all participants revealed that four participants
showed especially different behavior.While these four partic-
ipants answered very differently than themore homogeneous
rest of the participants, they also rated their sonification
experience and musical experience as low. For the sake of
transparency and a diverse sample of participants,we decided
to not exclude those four participants from any statistical
analysis presented in this study. Nevertheless, we did run all
the analyses also with a sample of only 31 participants, in
general revealing the same phenomena as the sample with
35 participants: The outliers for the Sonification conditions
in Fig. 6 would disappear, i.e., it is the same distinct group
of people causing the especially low sensitivity threshold
observations when it comes to sonification. With the four
participants excluded, the comparison of the display types
Sonification and Combination would be significantly differ-
ent (p = 0.04) but still show a small effect (� = −0.14).

6.2 Subjective ratings and experiences

The results from the post-test questionnaire can be seen in
Fig. 7, where the participants answered which modality was
preferred for making a decision when using Combination,
which display type the participant was most confident using,
which display type was easier to understand, and which
display type was the most enjoyable to use. Overall, the par-
ticipants felt most confident when using Combination (22 of
35), but reported that Visualization was easier to understand
(19 of 35), and thatCombinationwas the most enjoyable dis-
play type to use (24 of 35). The participants rated that they
either used just the visualization or a combination of the visu-
alization and sonification to reach a decision for their answer
(both 14 of 35).
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Fig. 6 The sensitivity
thresholds for 35 participants
and six different conditions are
displayed as box plots.
Participants are generally more
sensitive using Visualization and
Combination. Only for
Sonification, the sensitivity
threshold is not affected by the
type of correlation

The open-ended interviews provided additional insights
into the participants’ experience. When comparing the dif-
ficulty of analyzing the two types of correlations across the
display types, eleven participants explicitly stated that using
Visualization for negative correlations was the easiest to
interpret. For Sonification, four participants stated that the
positive correlation and negative correlation were equally
difficult to interpret, while three other participants stated that

Fig. 7 Number of responses to the post-test questionnaire regarding
the preference of display type. When using Combination, 14 partici-
pants decided to focus more on the visualization, 6 focused more on the
sonification, and 14 used both for their decision

the positive correlation was easier to interpret compared to
the negative correlation for Sonification. Three participants
stated that the negative correlations were easier to interpret
across all of the three display types.

Regarding the decision strategy when using Combina-
tion, eight participants stated that they used the visualization
for the first and easier tasks, and when tasks became more
difficult they started to also use the sonification in their
decision-making. Seven participants stated that they used the
visualization to make an initial decision, and then used the
sonification do double-check their decision. One participant
mentioned that“the audio helpedwith intuitive decisions and
the visuals helped with analytic decisions.”

Regarding the sonification, five participants expressed that
they were not confident with how they were supposed to
interpret the sonification. A participant with high self-rated
musical experience mentioned that they thought more about
the harmony of the sound while analyzing with the sonifi-
cation, referring to the tonal relationship between the first
and last auditory marks. Some participants mentioned how
the sonification affected them emotionally, where one par-
ticipant stated that “it felt satisfying to hear the strongest
correlation,” and “I found Visualization way more tedious/
boring – with the sound the time of the task felt shorter.”
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6.3 Summary of the results

The analysis presented in Section 6.1 shows that participants
were able to identify the strongest correlation with all three
types of display but with different sensitivity thresholds. For
Visualization and Combination, the participants reached a
lower sensitivity threshold, i.e., they had better sensitivity
(see Fig. 6 and Table 2). With negative correlations, partici-
pants were even able to distinguish datasets that only differed
by an amount of 0.8 ± 0.4% added noise and below. Using
Sonification enabled participants to reach a threshold of 3–
4% of added noise (with standard deviations of also 3–4%).
This is in line with the subjective feedback from several of
the participants stating that using Visualization for negative
correlations was the easiest to interpret, mostly because they
were able to compare the density of lines in the central area
between the two axes. As the analysis did not show a statis-
tically significant difference between the two display types
Visualization andCombination, it can be assumed that, when
having both modalities available, the visualization was the
dominant representation to take a decision. While the thresh-
olds for Visualization and Combination were dependent on
the type of correlation, the thresholds for Sonification did
not show a dependency on the type of correlation. A general
user, comparing non-adjacent axes using sonification, would
be similarly sensitive to changes of both positive and negative
correlation coefficients.

The use of the three display types did not influence the
task completion time significantly. While previous research
showed higher task completion times with sonification [71],
such a phenomenon did not appear in this study. The type
of correlation, on the other hand, was influential on the par-
ticipants’ task completion times. Negative correlations did
lead to slightly but significantly faster responses than pos-
itive correlation examples, which is a plausible outcome
with negative correlations resulting also in better sensitiv-
ity thresholds.

In the beginning of the user evaluation, the participants
were asked to report on their prior experience using sonifi-
cation and on their musicality. Our results indicate that the
participants’ prior knowledge of these two was influential
on only one specific condition: using Sonification to dis-
tinguish negative correlations. Participants with more sound
experience were more sensitive than the ones without prior
knowledge (� = −0.35 for sonification experience and−0.3
for musical experience). It is plausible that prior experience
and familiarity with sound affect the sensitivity threshold
of participants with the sonification conditions, but while
the phenomenon seems to exist for negative correlations, it
does not for positive correlations. Masking effects as they
are described by Schnupp et al. [75] might be relevant for the
explanation of such a phenomenon. As the sound design,
however, is based on semitones, it is not reasonable that

masking effects are solely responsible for the phenomenon
that we see in the data, and future research is needed to
explain this observation.

The subjective ratings from Section 6.2 show that using
Combination made participants more confident in their
answers, and it was also the most enjoyable display type
to use. The answers from the interviews indicate that partici-
pants used the sonification either to form an intuitive decision
or to double-check their decision based on the visualization.
Furthermore, the interviews indicated that sonification has
the potential not only to serve as an analysis method but also
to increase the engagement and emotional involvement.

7 Discussion

The evaluation of the present design was conducted by com-
bining three approaches described by Isenberg et al. [45].
First,we studied theuser performance (UP)by collectingdata
on the sensitivity, task completion times, as well as number
of interactions done by subjects to find an answers. Second,
we studied the user experience (UE) by collecting data on
the subjects’ confidence and enjoyment while using Paral-
lel Chords. Third, we provide a qualitative result inspection
(QRI) by describing the prototypical patterns and presenting
a usage scenario.

To the best of our knowledge, we are not aware of a study
that showed the dependency of users’ sensitivity for differ-
ences in correlations on the direction of the correlations using
parallel coordinates plots. The perceptive advantage of neg-
ative correlation patterns cannot be considered a surprise to
the visualization community. Nevertheless, our data confirms
that phenomenon. While we see a dependency on the type
of correlation in the visualization condition, we could not
observe such a dependency in the sonification condition.
Again, we are not aware of a study in the sonification lit-
erature that tested differences in sensitivity for very similar
correlation strengths. It is necessary to put this result into
context: For the chosen sound design (which is in general
a widely used one) and for the chosen base level of corre-
lation around r = 0.95 (σ = 0.07), we are able to report
a sensitivity threshold between three and four percent of
added Gaussian noise. Furthermore, we were able to show
that the type of correlation (positive or negative) does not
affect the sensitivity when participants use the sonification.
To understand these phenomena in more detail, a follow-up
study would be necessary, testing sensitivities at different
base correlation levels.

When relating our evaluation results to existing literature
in a more general sense, we can see that some align with
our results, while others deviate. Similar to our results, Stahl
and Vogt [78] showed, in contrary to their initial hypoth-
esis, that the audiovisual condition of an experiment with
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serial spatial stimuli did not show improved learnability of
spatial positions compared to a visual-only condition. Sim-
ilarly, when augmenting a visualization for a guidance task
with sonification, Roodaki et al. [73] conducted evaluations
which showed that participants performed better when using
the visual-only technique in comparison with the audiovi-
sual technique. On the other hand, a study of Rönnberg and
Johansson [72] showed that participants gave more precise
answers but that the response time was longer when using
an audio-visual display, compared to a visual-only display.
In our study, we observed lower sensitivity and no reportable
difference in response time. The results of the experiment by
Flowers et al. [31] also suggest that there is a cross-modal
equivalence of visual and auditory scatterplots for exploring
bivariate data samples, which strengthens the motivation of
presenting a scatter plot in the auditory domain.

Regarding the subjective aspect of the evaluation results,
most participants rated that the visualization was the easi-
est to understand out of the three display types. This can be
associated with the challenge for sonification as a data repre-
sentation technique being less known and used in everyday
life [6]. The lower sonification literacy can affect the amount
of training needed for participants to get accustomed to the
mappings [74]. This might also have influenced the partic-
ipants’ strategy when taking a decision in the experiment,
as several of the participants stated that they focused on the
visualization as their primarymethod for reaching a decision,
while the sonification was used to double-check or only used
for the more difficult tasks. Still, the sonification influenced
the overall experience of performing the experiment tasks,
considering that most participants felt more confident and
found the tasks more enjoyable when using the visualization
together with the sonification compared to using the visu-
alization by itself. These findings are emphasized by some
of the participants’ feedback of the sonification making them
more involved and satisfiedwhen hearing the strongest corre-
lation, which, in turn, suggests that the sonification positively
contributes to the user experience. Assessing enjoyability
acts as an initial exploration of whether the use of Paral-
lel Chords can promote more engagement of the user, which
could extend the use of the tool beyond analytics and towards
public engagement as well for future applications.

7.1 Applicability

The results from the present study show that it is possi-
ble to distinguish between different strengths of correlation
using all three display types but with different sensitivity
thresholds. Whenever the participants were able to use the
visualization they reached lower sensitivity thresholds, i.e.,
they performed better. The participants’ ability to correctly
interpret the presented datasets with sonification shows the

potential for applicability for other purposes since distin-
guishing between the strength of correlations is a more
complex task than just being aware of the existence or the
quality of a pattern. Therefore, the study results suggest Par-
allel Chords will be suitable at conveying complementary
and more high-level information about a dataset. Rather than
distinguishing between the strength of correlations, Parallel
Chords can be used to convey an overview of a dataset, to
make the user aware of the existence of patterns in the dataset.
As demonstrated with prototypical patterns in Section 4,
it is possible to distinguish between several types of pat-
terns while using the same sonification mappings. This can
be beneficially used when searching for patterns occurring
between non-adjacent axes in a parallel coordinates plots, as
demonstrated in the usage scenario in Section 4.1, which can
alleviate the challenge of axis ordering with parallel coordi-
nates.

As an audio-analytics design, Parallel Chords can draw
from the advantages of both sonification and visualization.
The sonification can extend a traditional parallel coordi-
nates plot by giving non-adjacent axes information while
keeping the same view in the visualization, which could be
beneficial when considering that interactive reordering costs
time and cognitive resources [51]. On the other end, other
multi-dimensional visualization conveys more dimensions
by displaying more plots of the data, such as the scatter plot
matrix. With our design, it is possible to display additional
dimensions while still keeping the same screen estate, which
can bemore suitable for smaller visual interfaces. By convey-
ing the data through sound, it offers a temporal aspect which
can lead to new insights of the data. In the context of our
design, the temporal perspective of sonification could there-
fore aid domain experts in the analysis of multi-dimensional
time-series data. Moreover, the fact that sound can be per-
ceived all around the user leads to that it can be utilized
in settings where the visual modality is limited. Monitoring
tasks are one such situation, where multi-dimensional tem-
poral data can be conveyed to the user through the focused
visual display as well as in the periphery through the soni-
fication. This is also the case in virtual reality and other
immersive environments, where the sonification component
of our design could guide the user to interesting attributes in
the dataset, which would otherwise be occluded or be out of
sight in a 3D environment. The Parallel Chords design could
also be of use in conventional data analysis and decision-
taking processes, as they are common in industrial design
contexts. An example for the use of parallel coordinates sup-
porting decision-taking between multi-criteria alternatives is
described by Cibulski et al. [14].

When relating our design to other similar designs in the
literature, we find examples of how our design provides a
different approach. The sonification design of Rönnberg and
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Johansson [72] extends a parallel coordinates display with
sonification to support a user in identifying areas of differ-
ent densities. In comparison to their design, ours sonifies
the data items individually. While the density display pro-
vides information about one specific phenomenon, Parallel
Chords is designed to help users identify several different
types of patterns in their data. Parson et al. [62] used a soni-
fication approach that treated a parallel coordinates plot as a
waveform, and changed the timbre of the sonification based
on the average value of the attributes of the dataset. While
this facilities an overview of the dataset, it does not allow
the user to focus on specific attributes with the sonification.
Through the Parallel Chords design it is possible to get spe-
cific attribute information by selecting different axes in the
parallel coordinates plot.

7.2 Limitations

Parallel Chords is not intended to increase the amount of data
that can be displayed using parallel coordinates, rather it aims
to support the use of parallel coordinates for data exploration.
Generally, Parallel Chords representing data both spatially
and temporally affects the scalability of the design in two
ways.While the conventional limitations regarding the visual
overplotting need to be considered, Parallel Chords also is
limited by temporal constraints. We evaluated the design by
sonifying 300 items with their onsets happening within one
second. Considering three to four seconds as the maximum
feasible time for effective sonification, the design scales up to
about 1000 data items. Considering different sound designs
with, e.g., shorter sounds or additional spatial positioning of
auditory marks could increase the scalability of the design.

While one central application of sonification concerns the
accessibility of visual display, this was not the focus of this
study. Nevertheless, the results regarding sensitivity thresh-
old and the different auditory patterns can inspire the design
of accessible visualizations. The design implications for the
sonification are not limited to parallel coordinates plots in
that regard.

The method to generate the data for the controlled exper-
iment of this study also implies one of its limitations. Some
participants were able to distinguish datasets that only dif-
fered by a very small amount of added Gaussian noise, i.e.,
by a standard deviation of only 1% and below. Such small
differences can not only be too small to be perceived as dif-
ferent, but also to be considered as statistically different at
all. To make sure to not ask participants to detect differences
between two statistically equal datasets, we re-generated the
staircase datasets whenever their Pearson r values would not
be monotonically decreasing over the course of the staircase.
It is unlikely that users would ever want to distinguish such
small differences between correlations ( �σ < 1%) using a
parallel coordinates plot. Therefore, when participants were

able to distinguish such small differences, they can be con-
sidered as perfectly sensitive.

To rule out the possibility of systematic higher sensitivity
thresholds due to our sonification design, we also studied the
potential influence of the chosen MIDI quantization of the
pitch axis on the evaluation results. A comparison between
the Pearson r correlation coefficients with and without the
36-step quantization of one of the axes showed a neglectable
difference. We can conclude that the observed sensitivity
thresholds with sonification, and therefore also the evalua-
tion results, were not significantly impacted by the MIDI
quantization.

8 Conclusion

We presented Parallel Chords, an audio-visual analytics
design for parallel coordinates that combines visual and
auditory displays to aid the user in finding and determining
patterns in multivariate data. Through a set of prototypical
patterns, we demonstrated how the sonification of Paral-
lel Chords can be interpreted to identify patterns together
with a parallel coordinates plot. With a usage scenario of a
real dataset, we showed how Parallel Chords can be used to
convey patterns between non-adjacent axes. The results of a
controlled user evaluation showed that participants were able
to distinguish differences of correlations, but with different
sensitivities when only using visualization or sonification,
and when using a combination of both.

While in this article we focused on only one of many
possible designs to combine parallel coordinates plots and
sonification, future work will cover several other aspects. In
this study, synthetic data was used as stimuli for participants
in the user evaluation to act as a first step to validate Parallel
Chords. Future experiments will need to use datasets and the
expertise from data analysts of different domains to evaluate
the real-world applicability of the current design. To allow for
amore extensive exploratory data analysis approach,Parallel
Chords can be extended to more efficiently compare several
non-adjacent axes. This could be done by sequentially sonify-
ing everypairwise relationof one axis throughone interaction
of the user. Alternatively, the variables of a dataset could be
mapped to individual auditory channels (like pitch, spatial
position, timbre, duration, and loudness) to enable a user
to become aware of the existence of patterns in their data by
only listening to the sequence of polylines once. A controlled
experiment would then reveal if a user would also identify
a correlation by hearing a complex sound moving from one
speaker to the other, or by the sounds getting louder over
time.

The results suggest that Parallel Chords can be a useful
audio-visual analytics tool, even if more research is needed
to fully explore and evaluate it. The work has not only led
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to novel knowledge about audio-visual analytics but also, to
some extent, bridged the distance between the visualization
and the sonification research communities.
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