
LISI Core – A Versatile Server Framework for Monitoring and Control … 69

LISI Core — A Versatile Server Framework for

Monitoring and Control of Devices and Services

in Smart Home Environments

Jakob Doppler, Christian Gradl

University of Applied Sciences St. Pölten
Institute for Creative\Media/Technologies
St. Pölten, Austria

{jakob.doppler, dm131558}@fhstp.ac.at

Abstract

LISI Core is a modular, Java-based server framework for monitoring and control
of heterogeneous devices and services in smart home environments. While many
toolkits offer this functionality for a wide range of bus systems and third party
hard- and software to the end user they fail at providing simple and affordable
means of programming, customization and extension to software engineers and
UI designers for rapid-prototyping and building individual solutions.
At first this paper explains the details of the LISI Core architecture, its core
components (plug-in mechanism, REST interface, session management). Sec-
ondly a range of implemented sample plug-ins and a RESTful tablet client inter-
face are discussed. These currently include temperature, lighting and shading
control and energy and presence monitoring via sensors and actuators on a
Beckhoff Twincat embedded server, TV & entertainment via XMBC media
player API and an audiovisual information display for real time energy feedback.
Finally the field test experiences of the server framework running in a real smart
home environment are discussed. LISI Core was tested in the LISI home. LISI is
the innovative, solar powered home of Solar Decathlon Team Austria. Solar
Decathlon is a biannual competition hosted by the US Department of Energy to
promote the application of solar technologies in buildings. Twenty homes de-
signed and built by university teams were open to the public and evaluated by a
jury in October 2013 in Irvine, California. Among all twenty preselected interna-
tional teams to compete, LISI was the overall winner.

70 Jakob Doppler, Christian Gradl

1 Introduction

1.1 Requirements

As part of the solar-powered smart home LISI (Living Inspired by Sustain-
able Innovation)1 a home automation system was required to address the
basic needs in future living, work and leisure scenarios such as (semi)auto-
mated control of heterogeneous devices and services and live monitoring and
logging of all available parameters – all by means of explicit and implicit
interaction.

With LISI Core a framework was designed to run a server on a single
low-powered machine that meets the following Solar Decathlon 2013 compe-
tition rules and building code [1] and the functional requirements of Team
Austria’s LISI home as much as possible. These include:

• Energy Balance: Since LISI is solar-powered energy efficiency is a main
goal throughout the building design. For information and communication
technology as well as home entertainment a total of only 250 W con-
sumption were estimated. With these components a server machine
Lenovo Thinkpad Edge E130 (20 W), an LG LED TV 42LW5590
(80 W), network infrastructure router (5 W), a Netgear PoE switch
(10 W), four SFX Technologies Gel Audio Driver GA6 / GA72 ceiling-
mounted speakers and amplification (50 W), wall-mounted speakers and
amplification JBL One (50 W).

• Affordability: In order to meet the contest criterion for best affordability
and as good as possible the home automation and LISI Core hardware
was built using mostly low cost components. The netbook with the addi-
tional 128 GB SSD is around € 500. The audio system and TV cost
around € 1000 in total. The only optional hardware are the additional
ceiling-mounted speakers and amplifier for € 400. After all the home
automation system components for metering energy and controlling elec-
trical installations are usually the most expensive position. While dedi-
cated home automation hardware might require a proprietary bus systems
and cost around € 5000 and more (see chapter 1.2), the Beckhoff embed-
ded Twincat server in combination with cheap industry standard compo-
nents is available for € 2000 only.

• Device and service control of HVAC via room temperature, dimming
and switching of ambient and task LED lighting, north and south shading

1 LISI – house of the Solar Decathlon Team Austria: http://www.solardecathlon.at

2 SFX Technologies Gel Audio Driver GA6: http://www.sfxtechnologies.co.uk/

LISI Core – A Versatile Server Framework for Monitoring and Control … 71

all via Beckhoff Twincat embedded server, TV, ceiling mounted-spea-
kers, wall-mounted speakers and content (AV playback, ambient infor-
mation display and sonification) via XMBC running on a connected net-
book.

• Real time monitoring and logging of all control commands and single
device energy consumption.

• Real time logging, monitoring and feedback methods of person presence
areas using ceiling-mounted radar motion sensors via Beckhoff Twincat
embedded server.

• RESTful Client API to expose all device and service functionality men-
tioned above to arbitrary clients anywhere in the local network or Inter-
net.

1.2 Home Automation Middleware – State of the Art

With the advent of cheap, embedded and low-to-none powered sensors, ac-
tuators and PC hardware home automation gets affordable for private homes
and help turning more and more smart home concepts into reality. However
most of the presented integrated solutions scale from expensive hardware
based bus systems over highly complex yet powerful middleware software to
proprietary solutions that are not open to programmers or are hardly custom-
izable for the individual needs of various demographic groups of potential
home owners. Let alone a young and tech-savy target group smart solutions
may give new communication means especially to elderly and people with
special needs.

Industry and building automation systems such as KNX/EIB and Lon-
Works offer a wide range of sensors, actuators and processors for classical
home control but usually do not interact with consumer electronics such as
TVs and AV media devices that are available in every household. Driven by
the high impact of of mobile ecosystems and gaming consoles in everyday
life software companies such as Microsoft, Apple and Google spread out to
the living room and battle over media control solutions but without any at-
tempt to foster ecosystem-independent standardization in the future. Simple
device discovery and control standards such as UPnP3 and DLNA4 may exist
for media devices only since a couple of years but fail to follow pace with
new media formats and innovations.

3 Universal Plug and Play: http://www.upnp.org/

4 Digital Living Network Alliance: http://www.dlna.org/

72 Jakob Doppler, Christian Gradl

The highly flexible, service-oriented OSGi middleware [2] was found by
an industry consortium to integrate embedded Java technology into a range
of devices from industry appliances to cars to household appliances but re-
quires a lot of knowledge even from experienced programmers. Additionally
controlling media is not considered so far. The OpenHab – Home Automa-
tion Bus5 is a promising open source attempt to use OSGi for holistic device
and service monitoring and control in smart homes. The project runs on small
microcontrollers such as the Raspberry Pi includes bindings to various home
automation buses and renders functionality to clients but again it does not
integrate (streaming) media.

As fast, reliable and interconnected cloud services emerge web technol-
ogy specifications and APIs such as HTML5 [3] and nodeJS6 and D3.js7 for
sockets, streaming media playback, asynchronous processes and visualization
are clearly to be considered in future smart home scenarios. But current
browsers and scripting environments are often restricted and lack flexibility
and performance for simultaneously playback, logging and control proprie-
tary and locally connected hardware sensors and actuators. Often third party
libraries and custom built wrappers are required for example communication
to connected hardware e.g. RS232. Additionally browser support and incom-
patible formats e.g. for video tag support [4] add significant complexity. As
popular modern operating systems deeply integrate web technologies and
services in their OS many of these issues however are expected to be re-
solved in the near future.

On the hardware side, small integrated microcontrollers with operating
systems, hardware accelerated (graphic) chips for USB, HDMI and wireless
communication standards such as WLAN, NFC become available at almost
no price. A famous example is the renowned Raspberry PI8. The same ap-
plies to a wide range of even middle to lower class smartphones that addi-
tionally host a multi-touch display and even dual- and quad-core processors.
LISI Core was designed to run on a low-powered netbook and host perform-
ance-critical services such as real-time database logging, REST service,

5 OpenHab – OSGi-based Open source home automation project: www.openhab.org/

6 NodeJS – serverside Java Script platform for fast and scalable network applications:
http://nodejs.org/

7 D3.js – a JavaScript visualization library for creation and control of dynamic and inter-
active graphical forms: http://d3js.org/

8 Raspberry Pi – a credit-card-sized single-board computer: http://www.raspberrypi.org/

LISI Core – A Versatile Server Framework for Monitoring and Control … 73

video and audio playback, visualization and device control via Beckhoff
Twincat simultaneously.

2 System Architecture

2.1 System Overview

The backbone of LISI Core is a Java servlet in a GlassFish 3.1 Java EE Ap-
plication Server9 instance with Jersey RESTful Web Service10 support run-
ning on a Thinkpad Edge E130 netbook (Windows 7 32-bit, 4 GB RAM, 1.4
GHz Intel Pentium 977 Sandy Bridge processor, 128 GB SSD). The LISI
Core architecture is loosely coupled with an embedded Beckhoff Twincat
home automation server that is mounted inside the LISI homes electric con-
trol cabinet. The 32-bit limitation was necessary since the Twincat 2 PLC
control library11 only supported this operating system at the time of develop-
ment. Both servers and wirelessly connected client devices such as the con-
trol tablets share the same LAN.

Figure 1 LISI Core – System architecture and various plug-ins (as used in the Solar
Decathlon Team Austrias LISI smart home)

99 Glassfish Java EE Application Server: https://glassfish.java.net/

10 Jersey RESTful Web Service: https://jersey.java.net/

11 Twincat 2 PLC control library: http://www.beckhoff.com/english.asp?twincat/libra-
ries.htm

74 Jakob Doppler, Christian Gradl

The LISI Core system architecture is outlined in Figure 1. The following
components ensure a versatile framework approach for both plug-in devel-
oper as well as client developers:
1) Server Specification and Database Abstraction

2) Plug-in Architecture

3) RESTful Client API

4) (Semi) Automated Profiles And Clients

2.2 Server Specifications and Database Abstraction

LISI Core is designed as a single servlet within a J2EE server – for the project
we rely on a GlassFish 3.1 instance – that uses the server’s internal JDBC
connection pool to access a local MySQL 5.7 database. Both, the server with
servlet and the database are hosted as Windows services that start whenever
the OS is booted. Moreover all components of the servlet are hardened against
system failure and power blackout that may occur in unknown environments
such as the prototypical LISI smart home that is built from scratch in around
nine days during the Solar Decathlon competition [1]. This includes: a batte-
ry-driven server running on a netbook, a database abstraction layer (DAO) that
recovers whenever the connection to the (local) database is lost, a self-hea-
ling connection to the Twincat Beckhoff home automation system even if the
network is down under house maintenance or due to any unplanned outage.

Figure 2 Basic database schema of the device hierarchy within the LISI Core
framework

LISI Core – A Versatile Server Framework for Monitoring and Control … 75

The database schema is designed to support both main functionalities of
the LISI Core framework: (a) to load and expose plug-in devices and services
easily via a RESTful Client API and (b) to keep all issued commands and
state changes in a live session and log them to a history. The log is also
available to interested clients applications for visualization purposes. The
paradigm of real household devices and appliances and their functionality is

kept in the hierarchy of the DB schema (see Figure 2). A device is the basic
entity – a third-party software or hardware – that might be addressed for con-

trol or status request. Every device is assigned to one deviceclass and

has one-to-many devicecommands. A devicecommand might also be shared

by more than one device except that it will never have the same plug-in
target and plug-in address. These two combined define a unique id within a

plug-in that may serve one or many devices.
The following is an example for a household equipped with:

• Eight lights of a deviceclass Dimmable LED that offer two device-
commands: a dim command is readable and is writeable with a value
between 0 and 100 where zero turns the light off and a readable ener-
gy command that gives an estimate on the current energy consumption
in W.

• Two single lights of a deviceclass Switchable LED that offers two
devicecommands: a switch command that is readable and writable with
0 and 1 and a readable energy command that gives an estimate on the
current energy consumption in W.

Depending on the addressed hardware all ten devices might share the same
plug-in target “Twincat” with different addresses “LI100” to “LI111”. Dur-
ing plug-in registration however the framework recognizes that for all de-
vices identical, read-only command energy was found whereas dim and
switch are linked only to the corresponding devices.

Besides some more basic parameters the framework defines amongst oth-
ers: (a) a simple security mechanism that allows commands only to be used
within the framework (isread/write) or also on remote clients (isread/write-
clientenabled), (b) a DB logging interval with updatefrequencysec and (c) a
client notification – that uses a UDP server socket to report command state
changes back to clients in a LAN. The latter is used for performance optimi-
zation of mobile clients. Since a REST interface requires polling every few
seconds the battery life of mobile devices is drained quickly due to costly
stateless HTTP calls over mobile Internet and prohibits even a single day of
operation in a household. This mode of operation however is still in discus-

76 Jakob Doppler, Christian Gradl

sion as the framework might switch to local communication exclusively
when the client is in the proximity of the households wireless LAN.

2.3 Plug-in Architecture

Given the database abstraction the versatility of the frameworks roots in its
plug-in management for monitoring and control of devices and services. A
plug-in consists of any number of Java classes hosting arbitrary HW devices
or services. Like in the LISI house these plug-ins might be for example a
Beckhoff automation system controlling electric installations and appliances,
a TV with a serial interface attached to a laptop hosting an XBMC media
server – that is controllable itself via a client API – and third-party appli-
cation accessing the LISI Core restful client API for live data such as visua-
lizations or sonification via auditory displays [5; pp. 79]. Each plug-in has to
provide two basic resources:

• XML configuration file config.xml

• Start-up class derived from IPlugin

The configuration file helps to setup the plug-ins state. For example a polling
rate of an external data source or a IP adress to the remote XBMC media
server could be set up. The following block shows an example of the Beck-
hoff home automation plug-in that is setup using the parameters below and
exposes control of one basic light device LI100 with two commands, namely
dim and energy, via LISI Core the restful Client API (see Figure 1).

<plugin target="twincat">

 [...]

 <devices>

 <device name="LI100">

 <longname> TaskLight Kitchen</longname>

 <deviceclassname>Lighting</deviceclassname>

 <devicecommands>

 <cmd address="iLI100dim" name="dim" [...] type="dim"

unit="percent" min="0" max="100" default="0" datatype="int"

isread="1" iswrite="1" iscread="1" iscwrite="1" />

 <cmd address="iLI100energy" name="powercurrent"

[...] type="current" unit="Wh" min="0" max="2000" default="0"

datatype="float" isread="1" iswrite="10" iscread="1"

iscwrite="10"

 [...]

 </devicecommands>

 </device>

 [...]

 </devices>

</plugin>

LISI Core – A Versatile Server Framework for Monitoring and Control … 77

At start-up the plug-in can access all these hierarchically structured

<setup> data in the IConfiBean object in the startup-class derived from

IPlugin. Much like and Android Activity [6] a few simple states define

the lifetime of a plug-in (see Figure 3). initalizeAndFirstStart is only

called once when the servlet starts. start and stop could be called multiple
times to reconnect broken resources such as a network or a database connec-

tion that is down. destroy once again is just called right before the servlet is
shutdown.

Figure 3 Plug-in lifecycle phases

2.4 RESTful Client API

The main objective of the LISI Core framework is to offer monitoring and
control functionality for all available plug-in devices and services to inter-
ested clients via a RESTful API (see Figure 1) with special focus on rapid
prototyping client applications such as a web interface, tablet or smartphone
UI or even information displays or auditory interfaces. Mindful of easy sys-
tem integration on the client side a flexible household information request
advertises all homes devices and services in a JSON format. The complete
structure of household to devices to devicecommands is derived from a Java
object hierarchy using the Google GSON12 (de)serializer. For Java-based
clients such as Android mobiles or desktop applications this even guarantees
that the serialized JSON string can be transformed back to a usable OOP
household structure. Currently the LISI Core API contains several commands

12 Google GSON: http://code.google.com/p/google-gson/

78 Jakob Doppler, Christian Gradl

for reading the household configuration, manipulating states of all devices
and reading the history of all device commands:

• lisiapi/information – Gets the initial information of the household
and all of its devices and their functionality in an easy parseable JSON
format.

• lisiapi/cmd/<deviceid>/<devicecommandid>/[<value>] – Gets or
sets value for a specific device command. E.g. lisiapi/cmd/LI100/dim/10
sets the dim value to 10, lisiapi/cmd/LI100/dim reads the current value.

• /history/<deviceid>/<devicecommandid>/<intervalstart(YYY

YMMddHHmmss)>/<intervalend(YYYYMMddHHmmss)> – Gets the cmd
history of an interval in a JSON format with a 1 min resolution.

• /media/[<play/picture/pause/stop/addtoplaylist/next/prev

ious/speed>]/[<value>] – Easily access the media API of a con-
nected XBMC media server. A command without parameters returns all
media items in the playlist, the successive commands control the player
and playlist behavior. The media request might only be temporarily as it
should be included in the default device and device command schema.

2.5 (Semi) Automated Profiles and Clients

With the plug-in management and the RESTful API the LISI Core frame-
works helps controlling, monitoring and semi (automating) workflows for
clients and internal (semi) automated profiles. The following gives a brief
overview of the endeavors in the LISI smart home:

• Multimedia Scenario Profiles: We defined four media-assisted household
profiles to support everyday work and lifestyles. The Solar Decathlon
presentation profiles Videopresentation and MovieNight turn on the TV,
set brightness and soundlevel, play predefined videos and sets shading
(in the future depending on light sensors). The dinner patch plays a pre-
defined playlist while dimming lights accordingly for a friendly and low-
light evening atmosphere within the LISI home.

• Presence Activation Profiles: With invisible cone shaped radar detectors
in the intermediate ceiling local lighting and single device-energy pro-
files can be controlled depending on person presence.

• Visualization and Sonification: New metaphors of visual information and
auditory displays are employed polling the live parameters such as power
consumption on single device level.

• Client-Control and Information Tablet: To test and evaluate the use of
the LISI Core framework a tablet interface was developed by a team of

LISI Core – A Versatile Server Framework for Monitoring and Control … 79

the Vienna University of Technology (INSO-DECO). The tablet displays
house information such as temperature, humidity, local weather data and
energy consumption on single device level. It controls lighting, shading,
ventilation, power outlets and media.

3 Future Considerations

Figure 4 Control and Information Display that interacts with the LISI Core frame-
work (done by Vienna University of Technology INSO-DECO, partner of the Solar
Decathlon Team Austria)

The system recovered even during maintenance times and power black-
outs. At the end of the Solar Decathlon 2013 competition Team Austria was
announced the overall winner and industry partner showed interest in market-
ing LISI Core. Until that however the system will need some more careful
considerations in its design and suitability for the market. These include:

• Extending the (semi) automated profiles: The concept of lifestyle profiles
based on the residents needs could be enhanced with metaphors of im-
plicit interaction and mulit-modal activity recognition within the house.

• Examine media feedback for related research fields: With research in
smart metering, home automation, digital health care, and ambient As-
sisted living the use of LISI Core could be extended to address end user

80 Jakob Doppler, Christian Gradl

questions such as: How much energy does a single device consume?,
how much does it cost?, and What information does an elderly person in
a household need to follow throughout the day? Those can be answered
by different means of multimedia feedback.

• System design and security: While a Windows OS netbook running a
Java server might be a convenient and easy to use target platform it is
neither very efficient nor very secure. Distributed computing on multiple
low powered platforms such as the Raspberry PI with Linux or Android
might be an interesting option.

References

[1] US Department of Energy (2013): DOE Solar Decathlon: Rules and Building
Code: http://www.solardecathlon.gov/rules.html <2013-11-04>.

[2] OSGi Alliance (2013): OSGi Core Release 5 Specification: http://www.osgi.org/
Specifications/HomePage <2013-11-04>.

[3] W3C (2013): HTML5 Editors Draft 7, Dec. 2013: http://www.w3.org/html/wg/
drafts/html/CR/ <2013-11-04>.

[4] Wijering, Jeroen (2013): The State of HTML5 Video: http://www.jwplayer.com/
html5/ <2013-11-04>.

[5] Kramer, Gregory (ed.) (1994): Auditory display : sonification, audification, and
auditory interfaces. 1st International Conference on Auditory Display (Santa Fe,
N.M.). Reading, Mass.: Addison-Wesley.

[6] Mednieks, Zigurd (2012): Programming Android. Sebastopol, CA: O’Reilly.

